Summary
Inclusion bodies are aggregates of specific types of protein found in neurons, a number of tissue cells including red blood cells, bacteria, viruses, and plants. Inclusion bodies of aggregations of multiple proteins are also found in muscle cells affected by inclusion body myositis and hereditary inclusion body myopathy. Inclusion bodies in neurons may be accumulated in the cytoplasm or nucleus, and are associated with many neurodegenerative diseases. Inclusion bodies in neurodegenerative diseases are aggregates of misfolded proteins (aggresomes) and are hallmarks of many of these diseases, including Lewy bodies in Lewy body dementias, and Parkinson's disease, neuroserpin inclusion bodies called Collins bodies in familial encephalopathy with neuroserpin inclusion bodies, inclusion bodies in Huntington's disease, Papp–Lantos bodies in multiple system atrophy, and various inclusion bodies in frontotemporal dementia including Pick bodies. Bunina bodies in motor neurons are a core feature of amyotrophic lateral sclerosis. Other usual cell inclusions are often temporary inclusions of accumulated proteins, fats, secretory granules or other insoluble components. Inclusion bodies are found in bacteria as particles of aggregated protein. They have a higher density than many other cell components but are porous. They typically represent sites of viral multiplication in a bacterium or a eukaryotic cell and usually consist of viral capsid proteins. Inclusion bodies contain very little host protein, ribosomal components or DNA/RNA fragments. They often almost exclusively contain the over-expressed protein and aggregation and has been reported to be reversible. It has been suggested that inclusion bodies are dynamic structures formed by an unbalanced equilibrium between aggregated and soluble proteins of Escherichia coli. There is a growing body of information indicating that formation of inclusion bodies occurs as a result of intracellular accumulation of partially folded expressed proteins which aggregate through non-covalent hydrophobic or ionic interactions or a combination of both.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.