A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies (like proteinopathy) and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.
Within neurodegenerative diseases, it is estimated that 55 million people worldwide had dementia in 2019, and that by 2050 this figure will increase to 139 million people.
Alzheimer's disease
Alzheimer's disease (AD) is a chronic neurodegenerative disease that results in the loss of neurons and synapses in the cerebral cortex and certain subcortical structures, resulting in gross atrophy of the temporal lobe, parietal lobe, and parts of the frontal cortex and cingulate gyrus. It is the most common neurodegenerative disease. Even with billions of dollars being used to find a treatment for Alzheimer's disease, no effective treatments have been found. However, clinical trials have developed certain compounds that could potentially change the future of Alzheimer's disease treatments. Within clinical trials stable and effective AD therapeutic strategies have a 99.5% failure rate.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
4-Hydroxynonenal, or 4-hydroxy-2-nonenal or 4-HNE or HNE, (), is an α,β-unsaturated hydroxyalkenal that is produced by lipid peroxidation in cells. 4-HNE is the primary α,β-unsaturated hydroxyalkenal formed in this process. It is a colorless oil. It is found throughout animal tissues, and in higher quantities during oxidative stress due to the increase in the lipid peroxidation chain reaction, due to the increase in stress events. 4-HNE has been hypothesized to play a key role in cell signal transduction, in a variety of pathways from cell cycle events to cellular adhesion.
Astrogliosis (also known as astrocytosis or referred to as reactive astrogliosis) is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from central nervous system (CNS) trauma, infection, ischemia, stroke, autoimmune responses or neurodegenerative disease. In healthy neural tissue, astrocytes play critical roles in energy provision, regulation of blood flow, homeostasis of extracellular fluid, homeostasis of ions and transmitters, regulation of synapse function and synaptic remodeling.
Krabbe disease (KD) (also known as globoid cell leukodystrophy or galactosylceramide lipidosis) is a rare and often fatal lysosomal storage disease that results in progressive damage to the nervous system. KD involves dysfunctional metabolism of sphingolipids and is inherited in an autosomal recessive pattern. The disease is named after the Danish neurologist Knud Krabbe (1885–1961). Symptoms in asymptomatic infantile-onset (
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
This course integrates knowledge in basic, systems, clinical and computational neuroscience, and engineering with the goal of translating this integrated knowledge into the development of novel method
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Explores Tau pathologies in Alzheimer's and related disorders, covering hyperphosphorylation, propagation, genetic associations, and therapeutic interventions.
Preventing the misfolding or aggregation of TDP-43 is the most actively pursued disease-modifying strategy to treat amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. In our work, we provide proof of concept that native state stabili ...
Mitochondria are essential organelles participating in numerous cellular functions, including energy harvesting, regulation of homeostasis and apoptosis. Changes in mitochondrial number, morphology, and function not only impact cellular metabolism but also ...
O-linked N-acetylglucosamine (O-GlcNAc) is an endogenous form of glycosylation that alters the structure of alpha-synuclein amyloid fibrils and attenuates their pathogenetic properties. The modified fibrils have a significantly reduced ability to seed the ...