Concept# Velocity dispersion

Summary

In astronomy, the velocity dispersion (σ) is the statistical dispersion of velocities about the mean velocity for a group of astronomical objects, such as an open cluster, globular cluster, galaxy, galaxy cluster, or supercluster. By measuring the radial velocities of the group's members through astronomical spectroscopy, the velocity dispersion of that group can be estimated and used to derive the group's mass from the virial theorem. Radial velocity is found by measuring the Doppler width of spectral lines of a collection of objects; the more radial velocities one measures, the more accurately one knows their dispersion. A central velocity dispersion refers to the σ of the interior regions of an extended object, such as a galaxy or cluster.
The relationship between velocity dispersion and matter (or the observed electromagnetic radiation emitted by this matter) takes several forms in astronomy based on the object(s) being observed. For instance, the M–σ relation was found for mate

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (41)

Loading

Loading

Loading

Related concepts (17)

Andromeda Galaxy

The Andromeda Galaxy is a barred spiral galaxy and is the nearest major galaxy to the Milky Way, where the Solar System resides. It was originally named the Andromeda Nebula and is cataloged as Mess

Supermassive black hole

A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (

Active galactic nucleus

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with character

Related courses (4)

Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.

The aim of this course is to acquire the basic knowledge on specific dynamical phenomena related to the origin, equilibrium, and evolution of star
clusters, galaxies, and galaxy clusters.

We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.

Related people (9)

In the absence of a full analytical treatment of nonlinear structure formation in the universe, numerical simulations provide the critical link between the properties of the underlying model and the features of the observed structures. Currently N-body simulations are the main tool to study structure growth. We explore an alternative framework for numerical simulations of structure formation. The underlying idea is to replace the long-range gravitational force in the Vlasov-Poisson system by a purely local interaction. To this end we trade the classical phase space distribution for its quantum mechanical counterpart, the Wigner distribution function. Its dynamical equation is equivalent to the Schrödinger equation and reduces to the Vlasov equation in the formal semi-classical limit. The proposed framework allows in principle to simulate systems with arbitrary phase space distributions and could for instance be beneficial for simulations of warm dark matter, where the velocity dispersion is important. We discuss several methods to obtain a set of wavefunctions whose Wigner distribution is close to a given initial phase space distribution function. An auxiliary gauge field is introduced to mediate the gravitational interaction, thereby obtaining a local Schrödinger-Maxwell system. We also use the ideas of lattice gauge theories to obtain a fully gauge-invariant discretization of the equations of motion. Their iterative solution was implemented in a three-dimensional simulation code. We discuss its computational complexity and memory requirements. Several testbed simulations were performed with this method. We compared the gravitational collapse of a Gaussian wavefunction with an independent numerical solution of the spherically symmetric Schrödinger-Newton system. The results were found to be in good agreement. Finally, a simple example of the growth of cosmic perturbations is investigated within our framework. We conclude by outlining various possible directions to optimize and develop our method.

Related units (4)

Related lectures (20)

Hongyu Li, Alessandro Lupi, Yves Revaz

Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravitohydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e. g., radiative cooling and UV background by the standardized package GRACKLE) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of similar to 3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.

Pascale Jablonka, Anja Von der Linden

We present K-band data for the brightest cluster galaxies (BCGs) from the ESO Distant Cluster Survey (EDisCS). These data are combined with the photometry published by Aragon Salamanca, Baugh & Kauffmann and a low-redshift comparison sample built from the BCG catalogue of von der Linden et al. BCG luminosities are measured inside a metric circular aperture with 37 kpc diameter. In agreement with previous studies, we find that the K-band Hubble diagram for BCGs exhibits very low scatter (similar to 0.35) over a redshift range of 0 < z < 1. The colour and rest-frame K-band luminosity evolution of the BCGs are in good agreement with population synthesis models of stellar populations which formed at z > 2 and evolved passively thereafter. In contrast with some previous studies, we do not detect any significant change in the stellar mass of the BCG since z similar to 1. These results do not seem to depend on the velocity dispersion of the parent cluster. We also find that there is a correlation between the 1D velocity dispersion of the clusters (sigma(cl)) and the K-band luminosity of the BCGs ( after correcting for passive-evolution). The clusters with large velocity dispersions, and therefore masses, tend to have brighter BCGs, i.e. BCGs with larger stellar masses. This dependency, although significant, is relatively weak: the stellar mass of the BCGs changes only by similar to 70 per cent over a two order of magnitude range in cluster mass. Furthermore, this dependency does not change significantly with redshift. We have compared our observational results with the hierarchical galaxy formation and evolution model predictions of De Lucia & Blaizot. We find that the models predict colours which are in reasonable agreement with the observations because the growth in stellar mass is dominated by the accretion of old stars. However, the stellar mass in the model BCGs grows by a factor of 3-4 since z = 1, a growth rate which seems to be ruled out by the observations. The models predict a dependency between the BCG's stellar mass and the velocity dispersion (mass) of the parent cluster in the same sense as the data, but the dependency is significantly stronger than observed. However, one major difficulty in this comparison is that we have measured magnitudes inside a fixed metric aperture while the models compute total luminosities.