László Fejes Tóth (Fejes Tóth László, ˈfɛjɛʃ ˈtoːt ˈlaːsloː 12 March 1915 – 17 March 2005) was a Hungarian mathematician who specialized in geometry. He proved that a lattice pattern is the most efficient way to pack centrally symmetric convex sets on the Euclidean plane (a generalization of Thue's theorem, a 2-dimensional analog of the Kepler conjecture). He also investigated the sphere packing problem. He was the first to show, in 1953, that proof of the Kepler conjecture can be reduced to a finite case analysis and, later, that the problem might be solved using a computer.
He was a member of the Hungarian Academy of Sciences (from 1962) and a director of the Alfréd Rényi Institute of Mathematics (1970-1983). He received both the Kossuth Prize (1957) and State Award (1973).
Together with H.S.M. Coxeter and Paul Erdős, he laid the foundations of discrete geometry.
As described in a 1999 interview with István Hargittai, Fejes Tóth's father was a railway worker, who advanced in his career within the railway organization ultimately to earn a doctorate in law. Fejes Tóth's mother taught Hungarian and German literature in a high school. The family moved to Budapest, when Fejes Tóth was five; there he attended elementary school and high school—the Széchenyi István Reálgimnázium—where his interest in mathematics began.
Fejes Tóth attended Pázmány Péter University, now the Eötvös Loránd University. As a freshman, he developed a generalized solution regarding Cauchy exponential series, which he published in the proceedings of the French Academy of Sciences—1935. He then received his doctorate at Pázmány Péter University, under the direction of Lipót Fejér.
After university, he served as a soldier for two years, but received a medical exemption. In 1941 he joined the University of Kolozsvár (Cluj). It was here that he became interested in packing problems. In 1944, he returned to Budapest to teach mathematics at Árpád High School.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores informatics as the fourth pillar of culture, its evolution, integration into society, and applications in modern physics and mathematics.
In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap. The associated packing density, η, of an arrangement is the proportion of the surface covered by the circles. Generalisations can be made to higher dimensions – this is called sphere packing, which usually deals only with identical spheres.
In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes circle packing in two dimensions, or hypersphere packing in higher dimensions) or to non-Euclidean spaces such as hyperbolic space.
The Kepler conjecture, named after the 17th-century mathematician and astronomer Johannes Kepler, is a mathematical theorem about sphere packing in three-dimensional Euclidean space. It states that no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing (face-centered cubic) and hexagonal close packing arrangements. The density of these arrangements is around 74.05%. In 1998, Thomas Hales, following an approach suggested by , announced that he had a proof of the Kepler conjecture.
In this course we will introduce core concepts of the theory of modular forms and consider several applications of this theory to combinatorics, harmonic analysis, and geometric optimization.
We applied first principles molecular dynamics (MD) technique to study structure, dynamics, and magnetic interactions of the Gd3+ aqua ion dissolved in liquid water, a prototypical system for Gd-based complexes used as contrast agents for magnetic res ...
Building on Viazovska’s recent solution of the sphere packing problem in eight dimensions, we prove that the Leech lattice is the densest packing of congruent spheres in twenty-four dimensions and that it is the unique optimal periodic packing. In particul ...
2017
, , , ,
Monte-Carlo Diffusion Simulations (MCDS) have been used extensively as a ground truth tool for the validation of microstructure models for Diffusion-Weighted MRI. However, methodological pitfalls in the design of the biomimicking geometrical configurations ...