Concept

László Fejes Tóth

Résumé
László Fejes Tóth (Fejes Tóth László, ˈfɛjɛʃ ˈtoːt ˈlaːsloː 12 March 1915 – 17 March 2005) was a Hungarian mathematician who specialized in geometry. He proved that a lattice pattern is the most efficient way to pack centrally symmetric convex sets on the Euclidean plane (a generalization of Thue's theorem, a 2-dimensional analog of the Kepler conjecture). He also investigated the sphere packing problem. He was the first to show, in 1953, that proof of the Kepler conjecture can be reduced to a finite case analysis and, later, that the problem might be solved using a computer. He was a member of the Hungarian Academy of Sciences (from 1962) and a director of the Alfréd Rényi Institute of Mathematics (1970-1983). He received both the Kossuth Prize (1957) and State Award (1973). Together with H.S.M. Coxeter and Paul Erdős, he laid the foundations of discrete geometry. As described in a 1999 interview with István Hargittai, Fejes Tóth's father was a railway worker, who advanced in his career within the railway organization ultimately to earn a doctorate in law. Fejes Tóth's mother taught Hungarian and German literature in a high school. The family moved to Budapest, when Fejes Tóth was five; there he attended elementary school and high school—the Széchenyi István Reálgimnázium—where his interest in mathematics began. Fejes Tóth attended Pázmány Péter University, now the Eötvös Loránd University. As a freshman, he developed a generalized solution regarding Cauchy exponential series, which he published in the proceedings of the French Academy of Sciences—1935. He then received his doctorate at Pázmány Péter University, under the direction of Lipót Fejér. After university, he served as a soldier for two years, but received a medical exemption. In 1941 he joined the University of Kolozsvár (Cluj). It was here that he became interested in packing problems. In 1944, he returned to Budapest to teach mathematics at Árpád High School.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.