Completeness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number.
Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction. There are many equivalent forms of completeness, the most prominent being Dedekind completeness and Cauchy completeness (completeness as a metric space).
The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom. Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields that are ordered and Cauchy complete. When the real numbers are instead constructed using a model, completeness becomes a theorem or collection of theorems.
Least-upper-bound property
The least-upper-bound property states that every nonempty subset of real numbers having an upper bound must have a least upper bound (or supremum) in the set of real numbers.
The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers
This set has an upper bound. However, this set has no least upper bound in Q: the least upper bound as a subset of the reals would be √2, but it does not exist in Q.
For any upper bound x ∈ Q, there is another upper bound y ∈ Q with y < x.
For instance, take x = 1.5, then x is certainly an upper bound of S, since x is positive and x^2 = 2.25 ≥ 2; that is, no element of S is larger than x.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the mathematical field of order theory, a continuum or linear continuum is a generalization of the real line. Formally, a linear continuum is a linearly ordered set S of more than one element that is densely ordered, i.e., between any two distinct elements there is another (and hence infinitely many others), and complete, i.e., which "lacks gaps" in the sense that every nonempty subset with an upper bound has a least upper bound.
In mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. Not every (partially) ordered set has the least upper bound property. For example, the set of all rational numbers with its natural order does not have the least upper bound property.
In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval , then it takes on any given value between and at some point within the interval. This has two important corollaries: If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem). The of a continuous function over an interval is itself an interval.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
In this paper, we consider electric vehicle charging facilities that offer various levels of service, i.e., charging rates, for varying prices such that rational users choose a level of service that minimizes the total cost to themselves including an oppor ...
Cakoni and Nguyen recently proposed very general conditions on the coefficients of Maxwell equations for which they established the discreten ess of the set of eigenvalues of the transmission problem and studied their locations. In this paper, we establish ...
2021
Without resorting to complex numbers or any advanced topological arguments, we show that any real polynomial of degree greater than two always has a real quadratic polynomial factor, which is equivalent to the fundamental theorem of algebra. The proof uses ...