Summary
Gene silencing is the regulation of gene expression in a cell to prevent the expression of a certain gene. Gene silencing can occur during either transcription or translation and is often used in research. In particular, methods used to silence genes are being increasingly used to produce therapeutics to combat cancer and other diseases, such as infectious diseases and neurodegenerative disorders. Gene silencing is often considered the same as gene knockdown. When genes are silenced, their expression is reduced. In contrast, when genes are knocked out, they are completely erased from the organism's genome and, thus, have no expression. Gene silencing is considered a gene knockdown mechanism since the methods used to silence genes, such as RNAi, CRISPR, or siRNA, generally reduce the expression of a gene by at least 70% but do not eliminate it. Methods using gene silencing are often considered better than gene knockouts since they allow researchers to study essential genes that are required for the animal models to survive and cannot be removed. In addition, they provide a more complete view on the development of diseases since diseases are generally associated with genes that have a reduced expression. Genomic Imprinting Paramutation Transposon silencing (or Histone Modifications) Transgene silencing Position effect RNA-directed DNA methylation RNA interference RNA silencing Nonsense mediated decay Transvection Meiotic silencing of unpaired DNA Antisense oligonucleotides were discovered in 1978 by Paul Zamecnik and Mary Stephenson. Oligonucleotides, which are short nucleic acid fragments, bind to complementary target mRNA molecules when added to the cell. These molecules can be composed of single-stranded DNA or RNA and are generally 13–25 nucleotides long. The antisense oligonucleotides can affect gene expression in two ways: by using an RNase H-dependent mechanism or by using a steric blocking mechanism. RNase H-dependent oligonucleotides cause the target mRNA molecules to be degraded, while steric-blocker oligonucleotides prevent translation of the mRNA molecule.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.