PHYS-741: Gauge Theories and the Standard ModelThe goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.
PHYS-416: Particle physics IIThis course aims to make students familiar and comfortable with the main concepts of particle physics, providing a clear connection between the theory and relevant experimental results, including the
PHYS-415: Particle physics IPresentation of particle properties, their symmetries and interactions.
Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-432: Quantum field theory IIThe goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
PHYS-428: Relativity and cosmology IIThis course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
PHYS-100: Advanced physics I (mechanics)La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
EE-567: Semiconductor devices IIStudents will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials
and concepts. Remark: at least 5 students should be enrolled for the course to be giv