Concept

Thermographic camera

Summary
A thermographic camera (also called an infrared camera or thermal imaging camera, thermal camera or thermal imager) is a device that creates an image using infrared (IR) radiation, similar to a normal camera that forms an image using visible light. Instead of the 400–700 nanometre (nm) range of the visible light camera, infrared cameras are sensitive to wavelengths from about 1,000 nm (1 micrometre or μm) to about 14,000 nm (14 μm). The practice of capturing and analyzing the data they provide is called thermography. Infrared was discovered in 1800 by Sir William Herschel as a form of radiation beyond red light. These "infrared rays" (infra is the Latin prefix for "below") were used mainly for thermal measurement. There are four basic laws of IR radiation: Kirchhoff's law of thermal radiation, Stefan–Boltzmann law, Planck's law, and Wien's displacement law. The development of detectors was mainly focused on the use of thermometers and bolometers until World War I. A significant step in the development of detectors occurred in 1829, when Leopoldo Nobili, using the Seebeck effect, created the first known thermocouple, fabricating an improved thermometer, a crude thermopile. He described this instrument to Macedonio Melloni. Initially, they jointly developed a greatly improved instrument. Subsequently, Melloni worked alone, creating an instrument in 1833 (a multielement thermopile) that could detect a person 10 metres away. The next significant step in improving detectors was the bolometer, invented in 1880 by Samuel Pierpont Langley. Langley and his assistant Charles Greeley Abbot continued to make improvements in this instrument. By 1901, it could detect radiation from a cow from 400 metres away and was sensitive to differences in temperature of one hundred thousandths (0.00001 C) of a degree Celsius. The first commercial thermal imaging camera was sold in 1965 for high voltage power line inspections. The first advanced application of IR technology in the civil section may have been a device to detect the presence of icebergs and steamships using a mirror and thermopile, patented in 1913.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (9)
MICRO-523: Optical detectors
Students analyse the fundamental characteristics of optical detectors. Thermal and photoemissive devices as well as photodiodes and infrared sensors are studied. CCD and CMOS cameras are analysed in d
CS-442: Computer vision
Computer Vision aims at modeling the world from digital images acquired using video or infrared cameras, and other imaging sensors. We will focus on images acquired using digital cameras. We will int
PHYS-732: Plasma Diagnostics in Basic Plasma Physics Devices and Tokamaks: from Principles to Practice
The programme will allow students to learn plasma diagnostics and data processing methods of modern fusion experiments and to bridge the gap between diagnostics theory and experimental practice.
Show more
Related concepts (16)
Forward-looking infrared
Forward-looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use a thermographic camera that senses infrared radiation. The sensors installed in forward-looking infrared cameras, as well as those of other thermal imaging cameras, use detection of infrared radiation, typically emitted from a heat source (thermal radiation), to create an image assembled for video output. They can be used to help pilots and drivers steer their vehicles at night and in fog, or to detect warm objects against a cooler background.
Thermography
Infrared thermography (IRT), thermal video and/or thermal imaging, is a process where a thermal camera captures and creates an image of an object by using infrared radiation emitted from the object in a process, which are examples of infrared imaging science. Thermographic cameras usually detect radiation in the long-infrared range of the electromagnetic spectrum (roughly 9,000–14,000 nanometers or 9–14 μm) and produce images of that radiation, called thermograms.
Night vision
Night vision is the ability to see in low-light conditions, either naturally with scotopic vision or through a night-vision device. Night vision requires both sufficient spectral range and sufficient intensity range. Humans have poor night vision compared to many animals such as cats, foxes and rabbits, in part because the human eye lacks a tapetum lucidum, tissue behind the retina that reflects light back through the retina thus increasing the light available to the photoreceptors.
Show more