Night vision is the ability to see in low-light conditions, either naturally with scotopic vision or through a night-vision device. Night vision requires both sufficient spectral range and sufficient intensity range. Humans have poor night vision compared to many animals such as cats, foxes and rabbits, in part because the human eye lacks a tapetum lucidum, tissue behind the retina that reflects light back through the retina thus increasing the light available to the photoreceptors.
Night-useful spectral range techniques can sense radiation that is invisible to a human observer. Human vision is confined to a small portion of the electromagnetic spectrum called visible light. Enhanced spectral range allows the viewer to take advantage of non-visible sources of electromagnetic radiation (such as near-infrared or ultraviolet radiation). Some animals such as the mantis shrimp and trout can see using much more of the infrared and/or ultraviolet spectrum than humans.
Sufficient intensity range is simply the ability to see with very small quantities of light.
Many animals have better night vision than humans do, the result of one or more differences in the morphology and anatomy of their eyes. These include having a larger eyeball, a larger lens, a larger optical aperture (the pupils may expand to the physical limit of the eyelids), more rods than cones (or rods exclusively) in the retina, and a tapetum lucidum.
Enhanced intensity range is achieved via technological means through the use of an , gain multiplication CCD, or other very low-noise and high-sensitivity arrays of photodetectors.
All photoreceptor cells in the vertebrate eye contain molecules of photoreceptor protein which is a combination of the protein photopsin in color vision cells, rhodopsin in night vision cells, and retinal (a small photoreceptor molecule). Retinal undergoes an irreversible change in shape when it absorbs light; this change causes an alteration in the shape of the protein which surrounds the retinal, and that alteration then induces the physiological process which results in vision.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will discuss classic material as well as recent advances in computer vision and machine learning relevant to processing visual data -- with a primary focus on embodied intelligence and visi
This is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
The course teaches the basics of autonomous mobile robots. Both hardware (energy, locomotion, sensors) and software (signal processing, control, localization, trajectory planning, high-level control)
A night-vision device (NVD), also known as a night optical/observation device (NOD), night-vision goggle (NVG), is an optoelectronic device that allows visualization of images in low levels of light, improving the user's night vision. The device enhances ambient visible light and converts near-infrared light into visible light which can be seen by the user; this is known as I2 (). By comparison, viewing of infrared thermal radiation is referred to as thermal imaging and operates in a different section of the infrared spectrum.
A thermographic camera (also called an infrared camera or thermal imaging camera, thermal camera or thermal imager) is a device that creates an image using infrared (IR) radiation, similar to a normal camera that forms an image using visible light. Instead of the 400–700 nanometre (nm) range of the visible light camera, infrared cameras are sensitive to wavelengths from about 1,000 nm (1 micrometre or μm) to about 14,000 nm (14 μm). The practice of capturing and analyzing the data they provide is called thermography.
The tapetum lucidum; təˈpiːtəm_'luːsɪdəm ; ) is a layer of tissue in the eye of many vertebrates and some other animals. Lying immediately behind the retina, it is a retroreflector. It reflects visible light back through the retina, increasing the light available to the photoreceptors (although slightly blurring the image). The tapetum lucidum contributes to the superior night vision of some animals. Many of these animals are nocturnal, especially carnivores, while others are deep sea animals.
At the same time, several different tutorials on available data and data tools, such as those from the Allen Institute for Brain Science, provide you with in-depth knowledge on brain atlases, gene exp
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
Sensing and imaging of light in the shortwave infrared (SWIR) range is increasingly used in various fields, including bio-imaging, remote sensing, and semiconductor process control. SWIR-sensitive organic photodetectors (OPDs) are promising because organic ...
This book has been designed for instructors in higher education or adult training who wish to develop a new course or revise an existing one. It adopts a practical, visual, and modular approach based on the principle of constructive alignment. At its heart ...
Applications demanding imaging at low-light conditions at near-infrared (NIR) and short-wave infrared (SWIR) wavelengths, such as quantum information science, biophotonics, space imaging, and light detection and ranging (LiDAR), have accelerated the develo ...