In theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime.
The term is most often used in the context of the application of local inertial frames to small regions of a gravitational field. Although gravitational tidal forces will cause the background geometry to become noticeably non-Euclidean over larger regions, if we restrict ourselves to a sufficiently small region containing a cluster of objects falling together in an effectively uniform gravitational field, their physics can be described as the physics of that cluster in a space free from explicit background gravitational effects.
Equivalence principle
When constructing his general theory of relativity, Einstein made the following observation: a freely falling object in a gravitational field will not be able to detect the existence of the field by making local measurements ("a falling man feels no gravity"). Einstein was then able to complete his general theory by arguing that the physics of curved spacetime must reduce over small regions to the physics of simple inertial mechanics (in this case special relativity) for small freefalling regions.
Einstein referred to this as "the happiest idea of my life".
In physics, the laboratory frame of reference, or lab frame for short, is a frame of reference centered on the laboratory in which the experiment (either real or thought experiment) is done. This is the reference frame in which the laboratory is at rest. Also, this is usually the frame of reference in which measurements are made, since they are presumed (unless stated otherwise) to be made by laboratory instruments. An example of instruments in a lab frame, would be the particle detectors at the detection facility of a particle accelerator.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
A non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are the same in all inertial frames, in non-inertial frames, they vary from frame to frame depending on the acceleration. In classical mechanics it is often possible to explain the motion of bodies in non-inertial reference frames by introducing additional fictitious forces (also called inertial forces, pseudo-forces and d'Alembert forces) to Newton's second law.
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers). For n dimensions, n + 1 reference points are sufficient to fully define a reference frame.
In mathematical physics, Minkowski space (or Minkowski spacetime) (mɪŋˈkɔːfski,_-ˈkɒf-) combines inertial space and time manifolds (x,y) with a non-inertial reference frame of space and time (x',t') into a four-dimensional model relating a position (inertial frame of reference) to the field (physics). A four-vector (x,y,z,t) consists of a coordinate axes such as a Euclidean space plus time. This may be used with the non-inertial frame to illustrate specifics of motion, but should not be confused with the spacetime model generally.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
This dataset includes a total of 635 annotated image patches from historical city maps. It is designed for the semantic segmentation of the maps into 5 semantic classes (building blocks, non-built, water, road network, background frame). 330 patches are ta ...
Does gravity affect decision-making? This question comes into sharp focus as plans for interplanetary human space missions solidify. In the framework of Bayesian brain theories, gravity encapsulates a strong prior, anchoring agents to a reference frame via ...
The formalism for non-Hermitian quantum systems sometimes blurs the underlying physics. We present a systematic study of the vielbeinlike formalism which transforms the Hilbert space bundles of non-Hermitian systems into the conventional ones, rendering th ...