Summary
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers). For n dimensions, n + 1 reference points are sufficient to fully define a reference frame. Using rectangular Cartesian coordinates, a reference frame may be defined with a reference point at the origin and a reference point at one unit distance along each of the n coordinate axes. In Einsteinian relativity, reference frames are used to specify the relationship between a moving observer and the phenomenon under observation. In this context, the term often becomes observational frame of reference (or observational reference frame), which implies that the observer is at rest in the frame, although not necessarily located at its origin. A relativistic reference frame includes (or implies) the coordinate time, which does not equate across different reference frames moving relatively to each other. The situation thus differs from Galilean relativity, in which all possible coordinate times are essentially equivalent. The need to distinguish between the various meanings of "frame of reference" has led to a variety of terms. For example, sometimes the type of coordinate system is attached as a modifier, as in Cartesian frame of reference. Sometimes the state of motion is emphasized, as in rotating frame of reference. Sometimes the way it transforms to frames considered as related is emphasized as in Galilean frame of reference. Sometimes frames are distinguished by the scale of their observations, as in macroscopic and microscopic frames of reference. In this article, the term observational frame of reference is used when emphasis is upon the state of motion rather than upon the coordinate choice or the character of the observations or observational apparatus.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)

Effective quality factor tuning mechanisms in micromechanical resonators

Luis Guillermo Villanueva Torrijo, Azadeh Ansari

Quality factor (Q) is an important property of micro- and nano-electromechanical (MEM/NEM) resonators that underlie timing references, frequency sources, atomic force microscopes, gyroscopes, and mass
2018

The relativistic foundations of synchrotron radiation

Giorgio Margaritondo

Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its
International Union of Crystallography (IUCr)2017
Related people (2)
Related concepts (120)
Classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
Lagrangian mechanics
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique. Lagrangian mechanics describes a mechanical system as a pair consisting of a configuration space and a smooth function within that space called a Lagrangian. For many systems, where and are the kinetic and potential energy of the system, respectively.
Frame of reference
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers). For n dimensions, n + 1 reference points are sufficient to fully define a reference frame.
Show more
Related courses (51)
ME-342: Introduction to turbomachinery
L'étudiant se familiarise avec les domaines de turbomachines thermiques et hydrauliques et les différents types de machines dans ce domaine. Il étudie les outils de base de conception et d'évaluation.
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Show more
Related lectures (580)
Frames of Reference: Physics 1
Covers frames of reference in physics, emphasizing the importance of choosing a reference frame and the laws of physics in different frames.
Sets and Operations: Introduction to Mathematics
Covers the basics of sets and operations in mathematics, from set properties to advanced operations.
Straight Shock Waves: Basics
Covers the basics of straight shock waves, including generation, parameters, and observer's frame of reference.
Show more
Related MOOCs (13)
Newton's Mechanics
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Point System Mechanics
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Show more