In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y =0.
It is a fundamental theorem of classical algebraic geometry that every algebraic set may be written in a unique way as a finite union of irreducible components.
These concepts can be reformulated in purely topological terms, using the Zariski topology, for which the closed sets are the algebraic subsets: A topological space is irreducible if it is not the union of two proper closed subsets, and an irreducible component is a maximal subspace (necessarily closed) that is irreducible for the induced topology. Although these concepts may be considered for every topological space, this is rarely done outside algebraic geometry, since most common topological spaces are Hausdorff spaces, and, in a Hausdorff space, the irreducible components are the singletons.
A topological space X is reducible if it can be written as a union of two closed proper subsets , of
A topological space is irreducible (or hyperconnected) if it is not reducible. Equivalently, X is irreducible if all non empty open subsets of X are dense, or if any two nonempty open sets have nonempty intersection.
A subset F of a topological space X is called irreducible or reducible, if F considered as a topological space via the subspace topology has the corresponding property in the above sense. That is, is reducible if it can be written as a union where are closed subsets of , neither of which contains
An irreducible component of a topological space is a maximal irreducible subset. If a subset is irreducible, its closure is also irreducible, so irreducible components are closed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
We study p-adic families of cohomological automorphic forms for GL(2) over imaginary quadratic fields and prove that families interpolating a Zariski-dense set of classical cuspidal automorphic forms only occur under very restrictive conditions. We show ho ...
This article describes the first full-scale realization of a double-layered, folded plate structure (DLFP), for a new hall for the Théâtre Vidy Lausanne. (Fig. 1). Enabled by a novel double-tenon connection technology, the shape of the components simultane ...
We state conditions under which the set S(k) of k-rational points on a del Pezzo surface S of degree 1 over an infinite field k of characteristic not equal to 2 or 3 is Zariski dense. For example, it suffices to require that the elliptic fibration S -> P-1 ...
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
In algebraic geometry, a generic point P of an algebraic variety X is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point. In classical algebraic geometry, a generic point of an affine or projective algebraic variety of dimension d is a point such that the field generated by its coordinates has transcendence degree d over the field generated by the coefficients of the equations of the variety.
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring (called the spectrum of the ring) a topological space.