The generalized gamma distribution is a continuous probability distribution with two shape parameters (and a scale parameter). It is a generalization of the gamma distribution which has one shape parameter (and a scale parameter). Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution, the Weibull distribution and the gamma distribution) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data. Another example is the half-normal distribution.
The generalized gamma distribution has two shape parameters, and , and a scale parameter, . For non-negative x from a generalized gamma distribution, the probability density function is
where denotes the gamma function.
The cumulative distribution function is
where denotes the lower incomplete gamma function,
and denotes the regularized lower incomplete gamma function.
The quantile function can be found by noting that where is the cumulative distribution function of the gamma distribution with parameters and . The quantile function is then given by inverting using known relations about inverse of composite functions, yielding:
with being the quantile function for a gamma distribution with .
If then the generalized gamma distribution becomes the Weibull distribution.
If the generalised gamma becomes the gamma distribution.
If then it becomes the exponential distribution.
If and then it becomes the Nakagami distribution.
If and then it becomes a half-normal distribution.
Alternative parameterisations of this distribution are sometimes used; for example with the substitution α = d/p. In addition, a shift parameter can be added, so the domain of x starts at some value other than zero. If the restrictions on the signs of a, d and p are also lifted (but α = d/p remains positive), this gives a distribution called the Amoroso distribution, after the Italian mathematician and economist Luigi Amoroso who described it in 1925.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In probability theory, the stable count distribution is the conjugate prior of a one-sided stable distribution. This distribution was discovered by Stephen Lihn (Chinese: 藺鴻圖) in his 2017 study of daily distributions of the S&P 500 and the VIX. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it. Of the three parameters defining the distribution, the stability parameter is most important.
Survival analysis is a branch of statistics for analyzing the expected duration of time until one event occurs, such as death in biological organisms and failure in mechanical systems. This topic is called reliability theory or reliability analysis in engineering, duration analysis or duration modelling in economics, and event history analysis in sociology.
In probability theory and statistics, the Weibull distribution ˈwaɪbʊl is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page. The distribution is named after Swedish mathematician Waloddi Weibull, who described it in detail in 1939, although it was first identified by Maurice René Fréchet and first applied by to describe a particle size distribution.
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
MDPI2024
Changing climatic conditions and increase of extreme events induced by climate change have impacts on non- adapted infrastructures, leading to destruction, damage costs and indirect impacts. To adapt infrastructures to those new conditions, there is a need ...
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...