Summary
In mathematics, a permutation group is a group G whose elements are permutations of a given set M and whose group operation is the composition of permutations in G (which are thought of as bijective functions from the set M to itself). The group of all permutations of a set M is the symmetric group of M, often written as Sym(M). The term permutation group thus means a subgroup of the symmetric group. If M = {1, 2, ..., n} then Sym(M) is usually denoted by Sn, and may be called the symmetric group on n letters. By Cayley's theorem, every group is isomorphic to some permutation group. The way in which the elements of a permutation group permute the elements of the set is called its group action. Group actions have applications in the study of symmetries, combinatorics and many other branches of mathematics, physics and chemistry. Being a subgroup of a symmetric group, all that is necessary for a set of permutations to satisfy the group axioms and be a permutation group is that it contain the identity permutation, the inverse permutation of each permutation it contains, and be closed under composition of its permutations. A general property of finite groups implies that a finite nonempty subset of a symmetric group is again a group if and only if it is closed under the group operation. The degree of a group of permutations of a finite set is the number of elements in the set. The order of a group (of any type) is the number of elements (cardinality) in the group. By Lagrange's theorem, the order of any finite permutation group of degree n must divide n! since n-factorial is the order of the symmetric group Sn. Permutation#Notations Since permutations are bijections of a set, they can be represented by Cauchy's two-line notation. This notation lists each of the elements of M in the first row, and for each element, its image under the permutation below it in the second row. If is a permutation of the set then, For instance, a particular permutation of the set {1, 2, 3, 4, 5} can be written as this means that σ satisfies σ(1) = 2, σ(2) = 5, σ(3) = 4, σ(4) = 3, and σ(5) = 1.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.