Résumé
En théorie des groupes (mathématiques), un groupe de permutations d'un ensemble X est par définition un sous-groupe du groupe symétrique SX. On parle d'un groupe de permutations de X ou, s'il n'est pas nécessaire de préciser l'ensemble X, d'un groupe de permutations. Pour un ensemble X, nous désignerons ici par SX et nous appellerons groupe symétrique de X l'ensemble des permutations de X, muni de la loi de groupe ∘ définie par f ∘ g : X → X, x ↦ f(g(x)). Cette définition convient à l'étude des actions à gauche d'un groupe sur un ensemble. Le groupe opposé du groupe noté ici SX convient à l'étude des actions à droite. Quand nous parlerons d'une action d'un groupe sur un ensemble, il s'agira d'une action à gauche. On sait qu'une action à gauche d'un groupe G sur un ensemble X peut être vue comme un homomorphisme de groupes de G dans SX. Soit G un groupe de permutations d'un ensemble X. Le groupe G agit (à gauche) sur X par Cette action est appelée l'action naturelle de G sur X; comme X est déterminé par G, on peut parler simplement de l'action naturelle de G. L'homomorphisme de G dans SX correspondant à cette action est l'injection canonique (inclusion) g ↦ g de G dans SX. Puisque cet homomorphisme est injectif, l'action naturelle d'un groupe de permutations est donc fidèle. Une bonne partie de la terminologie des actions de groupe est appliquée aux groupes de permutations. Par exemple, on dit qu'un groupe de permutations est transitif si son action naturelle est transitive. Comme on l'a rappelé, une action d'un groupe G sur un ensemble X peut être vue comme un homomorphisme de groupes φ de G dans SX. L' φ(G) de cet homomorphisme est un groupe de permutations de X. Certaines propriétés de l'action de G sur X ne dépendent que de φ(G). Par exemple, les orbites de l'action de G sur X sont exactement les orbites de l'action naturelle de φ(G) et en particulier, l'action de G sur X est transitive si et seulement φ(G) est transitif. En revanche, la fidélité de l'action de G sur X n'est pas déterminée par φ(G).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.