Concept

Seismic metamaterial

Summary
A seismic metamaterial, is a metamaterial that is designed to counteract the adverse effects of seismic waves on artificial structures, which exist on or near the surface of the earth. Current designs of seismic metamaterials utilize configurations of boreholes, trees or proposed underground resonators to act as a large scale material. Experiments have observed both reflections and bandgap attenuation from artificially induced seismic waves. These are the first experiments to verify that seismic metamaterials can be measured for frequencies below 100 Hz, where damage from Rayleigh waves is the most harmful to artificial structures. Seismic waveElastic wave and Hooke's law More than a million earthquakes are recorded each year, by a worldwide system of earthquake detection stations. The propagation velocity of the seismic waves depends on density and elasticity of the earth materials. In other words, the speeds of the seismic waves vary as they travel through different materials in the earth. The two main components of a seismic event are body waves and surface waves. Both of these have different modes of wave propagation. Computations showed that seismic waves traveling toward a building, could be directed around the building, leaving the building unscathed, by using seismic metamaterials. The very long wavelengths of earthquake waves would be shortened as they interact with the metamaterials; the waves would pass around the building so as to arrive in phase as the earthquake wave proceeded, as if the building was not there. The mathematical models produce the regular pattern provided by Metamaterial cloaking. This method was first understood with electromagnetic cloaking metamaterials - the electromagnetic energy is in effect directed around an object, or hole, and protecting buildings from seismic waves employs this same principle. Giant polymer-made split ring resonators combined with other metamaterials are designed to couple at the seismic wavelength. Concentric layers of this material would be stacked, each layer separated by an elastic medium.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.