Concept

Transformation optics

Summary
Transformation optics is a branch of optics which applies metamaterials to produce spatial variations, derived from coordinate transformations, which can direct chosen bandwidths of electromagnetic radiation. This can allow for the construction of new composite artificial devices, which probably could not exist without metamaterials and coordinate transformation. Computing power that became available in the late 1990s enables prescribed quantitative values for the permittivity and permeability, the constitutive parameters, which produce localized spatial variations. The aggregate value of all the constitutive parameters produces an effective value, which yields the intended or desired results. Hence, complex artificial materials, known as metamaterials, are used to produce transformations in optical space. The mathematics underpinning transformation optics is similar to the equations that describe how gravity warps space and time, in general relativity. However, instead of space and time, these equations show how light can be directed in a chosen manner, analogous to warping space. For example, one potential application is collecting sunlight with novel solar cells by concentrating the light in one area. Hence, a wide array of conventional devices could be markedly enhanced by applying transformation optics. Transformation optics has its beginnings in two research endeavors, and their conclusions. They were published on May 25, 2006, in the same issue of the peer-reviewed journal Science. The two papers describe tenable theories on bending or distorting light to electromagnetically conceal an object. Both papers notably map the initial configuration of the electromagnetic fields on to a Cartesian mesh. Twisting the Cartesian mesh, in essence, transforms the coordinates of the electromagnetic fields, which in turn conceal a given object. Hence, with these two papers, transformation optics is born. Transformation optics subscribes to the capability of bending light, or electromagnetic waves and energy, in any preferred or desired fashion, for a desired application.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.