Concept

Rømer's determination of the speed of light

Summary
Rømer's determination of the speed of light was the demonstration in 1676 that light has an apprehensible, measurable speed and so does not travel instantaneously. The discovery is usually attributed to Danish astronomer Ole Rømer, who was working at the Royal Observatory in Paris at the time. By timing the eclipses of the Jovian moon Io, Rømer estimated that light would take about 22 minutes to travel a distance equal to the diameter of Earth's orbit around the Sun. Using modern orbits, this would imply a speed of light of 226,663 kilometres per second, 24.4% lower than the true value of 299,792 km/s. In his calculations Rømer used the idea and observations that the apparent time between eclipses would be greater when the Earth relatively moves away from Jupiter and lesser while moving closer. Rømer's theory was controversial at the time that he announced it and he never convinced the director of the Paris Observatory, Giovanni Domenico Cassini, to fully accept it. However, it quickly gained support among other natural philosophers of the period such as Christiaan Huygens and Isaac Newton. It was finally confirmed nearly two decades after Rømer's death, with the explanation in 1729 of stellar aberration by the English astronomer James Bradley. The determination of east-west positioning (longitude) was a significant practical problem in cartography and navigation before the 1700s. In 1598 Philip III of Spain had offered a prize for a method to determine the longitude of a ship out of sight of land. Galileo proposed a method of establishing the time of day, and thus longitude, based on the times of the eclipses of the moons of Jupiter, in essence using the Jovian system as a cosmic clock; this method was not significantly improved until accurate mechanical clocks were developed in the eighteenth century. Galileo proposed this method to the Spanish crown in 1616–1617 but it proved to be impractical, not least because of the difficulty of observing the eclipses from a ship. However, with refinements the method could be made to work on land.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.