In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.
Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments.
Hilbert style. Every line is an unconditional tautology (or theorem).
Gentzen style. Every line is a conditional tautology (or theorem) with zero or more conditions on the left.
Natural deduction. Every (conditional) line has exactly one asserted proposition on the right.
Sequent calculus. Every (conditional) line has zero or more asserted propositions on the right.
In other words, natural deduction and sequent calculus systems are particular distinct kinds of Gentzen-style systems. Hilbert-style systems typically have a very small number of inference rules, relying more on sets of axioms. Gentzen-style systems typically have very few axioms, if any, relying more on sets of rules.
Gentzen-style systems have significant practical and theoretical advantages compared to Hilbert-style systems. For example, both natural deduction and sequent calculus systems facilitate the elimination and introduction of universal and existential quantifiers so that unquantified logical expressions can be manipulated according to the much simpler rules of propositional calculus.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
The course introduces the foundations on which programs and programming languages are built. It introduces syntax, types and semantics as building blocks that together define the properties of a progr
Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning. Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system).
On ten loose handwritten folios dating back from April 1679, Leibniz gradually devised, in the course of three days, a full-blown theory of thought that nonetheless remained unpublished and still has received little attention from scholars. Conceiving of a ...
The pursuit of software security and reliability hinges on the identification and elimination of software vulnerabilities, a challenge compounded by the vast and evolving complexity of modern systems. Fuzzing has emerged as an indispensable technique for b ...
A new set of analytical formulae for calculating the bootstrap current and the neoclassical conductivity in tokamak experiments is presented. Previous works comparing the widely used Sauter model with results of recently developed numerical neoclassical so ...