En logique mathématique et plus précisément en théorie de la démonstration, le calcul des séquents est un système de déduction créé par Gerhard Gentzen. Le nom de ce formalisme fait référence à un style particulier de déduction ; le système original a été adapté à diverses logiques, telles que la logique classique, la logique intuitionniste et la logique linéaire. Un séquent est une suite d'hypothèses suivie d'une suite de conclusions, les deux suites étant usuellement séparées par le symbole (taquet droit), « : » (deux-points) ou encore (flèche droite) dans l'œuvre originale de Gentzen.
Un séquent représente une étape d'une démonstration, le calcul des séquents explicitant les opérations possibles sur ce séquent en vue d'obtenir une démonstration complète et correcte.
En 1934, Gentzen a proposé la déduction naturelle, un formalisme pour décrire les preuves du calcul des prédicats, dont l'idée était de coller au plus près à la manière dont les mathématiciens raisonnent. Il a ensuite tenté d'utiliser la déduction naturelle pour produire une preuve syntaxique de la cohérence de l'arithmétique, mais les difficultés techniques l'ont conduit à reformuler le formalisme en une version plus symétrique : le calcul des séquents. Contrairement à la déduction naturelle où un jugement est une suite d'hypothèses suivie d'une conclusion, dans le calcul des séquents, un jugement peut contenir plusieurs conclusions. C'est dans ce cadre qu'il a démontré ce qui devait devenir l'un des théorèmes principaux de la théorie de la démonstration : le théorème délimination des coupures. Dag Prawitz a montré en 1965 que ce théorème pouvait se transporter à la déduction naturelle.
Le terme calcul des séquents est une traduction de l'anglais sequent calculus, lui-même hérité de l'allemand Sequenzenkalkül.
L'objet de base du calcul est le séquent, qui est un couple de listes finies (éventuellement vides) de formules, séparées par un symbole qui se lit « thèse ». Les séquents sont ainsi usuellement notés :
où les sont les hypothèses et les sont les conclusions du séquent.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
En logique mathématique, la déduction naturelle est un système formel où les règles de déduction des démonstrations sont proches des façons naturelles de raisonner. C'est une étape importante de l'histoire de la théorie de la démonstration pour plusieurs raisons : contrairement aux systèmes à la Hilbert fondés sur des listes d'axiomes logiques plus ou moins ad hoc, la déduction naturelle repose sur un principe systématique de symétrie : pour chaque connecteur, on donne une paire de règles duales (introduction/élimination) ; elle a conduit Gentzen à inventer un autre formalisme très important en théorie de la démonstration, encore plus « symétrique » : le calcul des séquents ; elle a permis dans les années 1960 d'identifier la première instance de l'isomorphisme de Curry-Howard.
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
The course introduces the foundations on which programs and programming languages are built. It introduces syntax, types and semantics as building blocks that together define the properties of a progr
Couvre les bases et les applications du calcul séquentiel en logique et théorie des preuves, y compris l'élimination des coupes et l'analyse des preuves pratiques.
Explore la relation entre les preuves logiques et les preuves de programmation à travers la correspondance de Curry-Howard.
Couvre l'organisation de la base de code de l'assistante d'épreuve LISA, le paquet noyau, la formalisation FOL et le paquet d'épreuves.
The pursuit of software security and reliability hinges on the identification and elimination of software vulnerabilities, a challenge compounded by the vast and evolving complexity of modern systems. Fuzzing has emerged as an indispensable technique for b ...
EPFL2024
On ten loose handwritten folios dating back from April 1679, Leibniz gradually devised, in the course of three days, a full-blown theory of thought that nonetheless remained unpublished and still has received little attention from scholars. Conceiving of a ...
A new set of analytical formulae for calculating the bootstrap current and the neoclassical conductivity in tokamak experiments is presented. Previous works comparing the widely used Sauter model with results of recently developed numerical neoclassical so ...