Constructive set theoryAxiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be set bounded, motivated by results tied to impredicativity.
Disjunction and existence propertiesIn mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005). The disjunction property is satisfied by a theory if, whenever a sentence A ∨ B is a theorem, then either A is a theorem, or B is a theorem. The existence property or witness property is satisfied by a theory if, whenever a sentence (∃x)A(x) is a theorem, where A(x) has no other free variables, then there is some term t such that the theory proves A(t).
Markov's principleMarkov's principle, named after Andrey Markov Jr, is a conditional existence statement for which there are many equivalent formulations, as discussed below. The principle is logically valid classically, but not in intuitionistic constructive mathematics. However, many particular instances of it are nevertheless provable in a constructive context as well. The principle was first studied and adopted by the Russian school of constructivism, together with choice principles and often with a realizability perspective on the notion of mathematical function.
RealizabilityIn mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. Formulas from a formal theory are "realized" by objects, known as "realizers", in a way that knowledge of the realizer gives knowledge about the truth of the formula. There are many variations of realizability; exactly which class of formulas is studied and which objects are realizers differ from one variation to another.
L. E. J. BrouwerLuitzen Egbertus Jan Brouwer (ˈbraʊ.ər; ˈlœy̯tsə(n) ɛɣˈbɛrtəs jɑn ˈbrʌu̯ər; 27 February 1881 – 2 December 1966), usually cited as L. E. J. Brouwer but known to his friends as Bertus, was a Dutch mathematician and philosopher who worked in topology, set theory, measure theory and complex analysis. Regarded as one of the greatest mathematicians of the 20th century, he is known as the founder of modern topology, particularly for establishing his fixed-point theorem and the topological invariance of dimension.
Constructive analysisIn mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics. The name of the subject contrasts with classical analysis, which in this context means analysis done according to the more common principles of classical mathematics. However, there are various schools of thought and many different formalizations of constructive analysis.
Church's thesis (constructive mathematics)In constructive mathematics, Church's thesis is an axiom stating that all total functions are computable functions. The similarly named Church–Turing thesis states that every effectively calculable function is a computable function, thus collapsing the former notion into the latter. is stronger in the sense that with it every function is computable. The constructivist principle is fully formalizable, using formalizations of "function" and "computable" that depend on the theory considered.
Double-negation translationIn proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic. Typically it is done by translating formulas to formulas which are classically equivalent but intuitionistically inequivalent. Particular instances of double-negation translations include Glivenko's translation for propositional logic, and the Gödel–Gentzen translation and Kuroda's translation for first-order logic.
Dialectica interpretationIn proof theory, the Dialectica interpretation is a proof interpretation of intuitionistic logic (Heyting arithmetic) into a finite type extension of primitive recursive arithmetic, the so-called System T. It was developed by Kurt Gödel to provide a consistency proof of arithmetic. The name of the interpretation comes from the journal Dialectica, where Gödel's paper was published in a 1958 special issue dedicated to Paul Bernays on his 70th birthday.
Effective toposIn mathematics, the effective topos introduced by captures the mathematical idea of effectivity within the framework. The topos is based on the partial combinatory algebra given by Kleene's first algebra . In Kleene's notion of recursive realizability, any predicate is assigned realizing numbers, i.e. a subset of . The extremal propositions are and , realized by and . However in general, this process assigns more data to a proposition than just a binary truth value.