Mathematical beautyMathematical beauty is the aesthetic pleasure derived from the abstractness, purity, simplicity, depth or orderliness of mathematics. Mathematicians may express this pleasure by describing mathematics (or, at least, some aspect of mathematics) as beautiful or describe mathematics as an art form, (a position taken by G. H. Hardy) or, at a minimum, as a creative activity. Comparisons are made with music and poetry. Mathematicians describe an especially pleasing method of proof as elegant.
Superfluid helium-4Superfluid helium-4 is the superfluid form of helium-4, an isotope of the element helium. A superfluid is a state of matter in which matter behaves like a fluid with zero viscosity. The substance, which looks like a normal liquid, flows without friction past any surface, which allows it to continue to circulate over obstructions and through pores in containers which hold it, subject only to its own inertia. The formation of the superfluid is known to be related to the formation of a Bose–Einstein condensate.
Omega baryonThe omega baryons are a family of subatomic hadron (a baryon) particles that are represented by the symbol _Omega and are either neutral or have a +2, +1 or −1 elementary charge. They are baryons containing no up or down quarks. Omega baryons containing top quarks are not expected to be observed. This is because the Standard Model predicts the mean lifetime of top quarks to be roughly 5e-25s, which is about a twentieth of the timescale for strong interactions, and therefore that they do not form hadrons.
Deep inelastic scatteringIn particle physics, deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. It was first attempted in the 1960s and 1970s and provided the first convincing evidence of the reality of quarks, which up until that point had been considered by many to be a purely mathematical phenomenon. It is an extension of Rutherford scattering to much higher energies of the scattering particle and thus to much finer resolution of the components of the nuclei.
Quantum hydrodynamicsIn condensed matter physics, quantum hydrodynamics is most generally the study of hydrodynamic-like systems which demonstrate quantum mechanical behavior. They arise in semiclassical mechanics in the study of metal and semiconductor devices, in which case being derived from the Boltzmann transport equation combined with Wigner quasiprobability distribution. In quantum chemistry they arise as solutions to chemical kinetic systems, in which case they are derived from the Schrödinger equation by way of Madelung equations.
Quantum vortexIn physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction.
Precision tests of QEDQuantum electrodynamics (QED), a relativistic quantum field theory of electrodynamics, is among the most stringently tested theories in physics. The most precise and specific tests of QED consist of measurements of the electromagnetic fine-structure constant, α, in various physical systems. Checking the consistency of such measurements tests the theory. Tests of a theory are normally carried out by comparing experimental results to theoretical predictions.
Functional integrationFunctional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space, but a space of functions. Functional integrals arise in probability, in the study of partial differential equations, and in the path integral approach to the quantum mechanics of particles and fields. In an ordinary integral (in the sense of Lebesgue integration) there is a function to be integrated (the integrand) and a region of space over which to integrate the function (the domain of integration).
Regularization (physics)In physics, especially quantum field theory, regularization is a method of modifying observables which have singularities in order to make them finite by the introduction of a suitable parameter called the regulator. The regulator, also known as a "cutoff", models our lack of knowledge about physics at unobserved scales (e.g. scales of small size or large energy levels). It compensates for (and requires) the possibility that "new physics" may be discovered at those scales which the present theory is unable to model, while enabling the current theory to give accurate predictions as an "effective theory" within its intended scale of use.