Summary
In particle physics, deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. It was first attempted in the 1960s and 1970s and provided the first convincing evidence of the reality of quarks, which up until that point had been considered by many to be a purely mathematical phenomenon. It is an extension of Rutherford scattering to much higher energies of the scattering particle and thus to much finer resolution of the components of the nuclei. Henry Way Kendall, Jerome Isaac Friedman and Richard E. Taylor were joint recipients of the Nobel Prize of 1990 "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics." To explain each part of the terminology, "scattering" refers to the lepton's (electron, muon, etc.) deflection. Measuring the angles of deflection gives information about the nature of the process. "Inelastic" means that the target absorbs some kinetic energy. In fact, at the very high energies of leptons used, the target is "shattered" and emits many new particles. These particles are hadrons and, to oversimplify greatly, the process is interpreted as a constituent quark of the target being "knocked out" of the target hadron, and due to quark confinement, the quarks are not actually observed but instead produce the observable particles by hadronization. The "deep" refers to the high energy of the lepton, which gives it a very short wavelength and hence the ability to probe distances that are small compared with the size of the target hadron, so it can probe "deep inside" the hadron. Also, note that in the perturbative approximation it is a high-energy virtual photon emitted from the lepton and absorbed by the target hadron which transfers energy to one of its constituent quarks, as in the adjacent diagram.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
PHYS-416: Particle physics II
Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
Related lectures (21)
Partons and Hadrons: Strong Force and Deep Inelastic Scattering
Explores partons, hadrons, strong force, deep inelastic scattering, elastic and inelastic scattering, and Bjorken scaling.
The weak interactions of leptons
Delves into neutrino flavors, muon decay, LFU violation, and neutrino-quark scattering, exploring weak interactions of leptons.
Electron-Proton Scattering: Structure Probe
Delves into electron-proton scattering to probe the proton's structure through elastic and deep inelastic processes, form factors, and higher energy interactions.
Show more
Related publications (84)
Related concepts (16)
Elastic scattering
Elastic scattering is a form of particle scattering in scattering theory, nuclear physics and particle physics. In this process, the kinetic energy of a particle is conserved in the center-of-mass frame, but its direction of propagation is modified (by interaction with other particles and/or potentials) meaning the two particles in the collision do not lose energy. Furthermore, while the particle's kinetic energy in the center-of-mass frame is constant, its energy in the lab frame is not.
Up quark
The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of +2/3 e and a bare mass of 2.2MeV/c2. Like all quarks, the up quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions.
Down quark
The down quark (symbol: d) is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most commonly found in atomic nuclei, where it combines with up quarks to form protons and neutrons. The proton is made of one down quark with two up quarks, and the neutron is made up of two down quarks with one up quark.
Show more