Weierstrass factorization theoremIn mathematics, and particularly in the field of complex analysis, the Weierstrass factorization theorem asserts that every entire function can be represented as a (possibly infinite) product involving its zeroes. The theorem may be viewed as an extension of the fundamental theorem of algebra, which asserts that every polynomial may be factored into linear factors, one for each root. The theorem, which is named for Karl Weierstrass, is closely related to a second result that every sequence tending to infinity has an associated entire function with zeroes at precisely the points of that sequence.
Apéry's constantIn mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number where ζ is the Riemann zeta function. It has an approximate value of ζ(3) = 1.20205 69031 59594 28539 97381 61511 44999 07649 86292 ... . The constant is named after Roger Apéry. It arises naturally in a number of physical problems, including in the second- and third-order terms of the electron's gyromagnetic ratio using quantum electrodynamics.
Dedekind zeta functionIn mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K.
Hankel contourIn mathematics, a Hankel contour is a path in the complex plane which extends from (+∞,δ), around the origin counter clockwise and back to (+∞,−δ), where δ is an arbitrarily small positive number. The contour thus remains arbitrarily close to the real axis but without crossing the real axis except for negative values of x. The Hankel contour can also be represented by a path that has mirror images just above and below the real axis, connected to a circle of radius ε, centered at the origin, where ε is an arbitrarily small number.
Lerch zeta functionIn mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887. The Lerch zeta function is given by A related function, the Lerch transcendent, is given by The transcendent only converges for any real number , where: or and .
Generalized Riemann hypothesisThe Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true.
L-functionIn mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization. The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory.
1 + 2 + 3 + 4 + ⋯The infinite series whose terms are the natural numbers 1 + 2 + 3 + 4 + ⋯ is a divergent series. The nth partial sum of the series is the triangular number which increases without bound as n goes to infinity. Because the sequence of partial sums fails to converge to a finite limit, the series does not have a sum. Although the series seems at first sight not to have any meaningful value at all, it can be manipulated to yield a number of mathematically interesting results.
1 + 1 + 1 + 1 + ⋯In mathematics, 1 + 1 + 1 + 1 + ⋯, also written \sum_{n=1}^{\infin} n^0, , or simply , is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers. The sequence 1n can be thought of as a geometric series with the common ratio 1. Unlike other geometric series with rational ratio (except −1), it converges in neither the real numbers nor in the p-adic numbers for some p. In the context of the extended real number line since its sequence of partial sums increases monotonically without bound.
Multiplication theoremIn mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises. The multiplication theorem takes two common forms.