Théorème de factorisation de WeierstrassEn mathématiques, et plus précisément en analyse, le théorème de factorisation de Weierstrass, nommé en l'honneur de Karl Weierstrass, affirme que les fonctions entières peuvent être représentées par un produit infini, appelé produit de Weierstrass, mettant en jeu leurs zéros. Du développement en série entière suivant pour u ∈ ]–1;1[ : on déduit que la fonction tronquée aux m premiers termes est sensiblement égale à 1 sur [–1 ; 1], sauf dans un voisinage de u = 1 où elle admet un zéro d'ordre 1.
Constante d'ApéryEn analyse mathématique, la constante d'Apéry est la valeur en 3 de la fonction zêta de Riemann : Elle porte le nom de Roger Apéry, qui a montré en 1978 que ce nombre est irrationnel. On n'en connaît pas de forme fermée. Cette constante était connue avec en 1998, en 2003 et jusqu'à en 2015.
Fonction zêta de DedekindEn mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau O des entiers de K, où N(I) désigne la norme de I (relative au corps Q des rationnels). Cette norme est égale au cardinal de l'anneau quotient O/I. En particulier, ζ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζ ont une signification considérable en théorie algébrique des nombres.
Hankel contourIn mathematics, a Hankel contour is a path in the complex plane which extends from (+∞,δ), around the origin counter clockwise and back to (+∞,−δ), where δ is an arbitrarily small positive number. The contour thus remains arbitrarily close to the real axis but without crossing the real axis except for negative values of x. The Hankel contour can also be represented by a path that has mirror images just above and below the real axis, connected to a circle of radius ε, centered at the origin, where ε is an arbitrarily small number.
Fonction zêta de LerchEn mathématiques, la fonction zêta de Lerch, ou fonction zêta de Hurwitz-Lerch est une fonction spéciale qui généralise la fonction zêta de Hurwitz et le polylogarithme, nommée d'après le mathématicien Mathias Lerch. Elle est définie comme somme d'une série comme suit : La fonction zêta de Lerch est reliée à la fonction transcendante de Lerch, définie par la formule : par l'identité : La fonction zêta de Hurwitz est un cas particulier, donnée par : Le polylogarithme est un cas particulier de la fonction zêt
Hypothèse de Riemann généraliséeL'hypothèse de Riemann est l'une des plus importantes conjectures des mathématiques et concerne les zéros de la fonction ζ de Riemann. Divers objets géométriques et arithmétiques peuvent être décrits par ce que l'on appelle les fonctions L globales, qui sont similaires formellement à la fonction zêta de Riemann. On peut alors se poser la même question à propos des zéros de ces fonctions L, fournissant diverses généralisations de l'hypothèse de Riemann.
Fonction Lvignette|Représentation de la fonction ζ de Riemann, exemple le plus classique de fonction L En mathématiques, la théorie des fonctions L est devenue une branche très substantielle, et encore largement conjecturelle, de la théorie analytique des nombres contemporaine. On y construit de larges généralisations de la fonction zêta de Riemann et même des séries L pour un caractère de Dirichlet et on y énonce de manière systématique leurs propriétés générales, qui dans la plupart des cas sont encore hors de portée d'une démonstration.
1 + 2 + 3 + 4 + ⋯1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente. La n-ième somme partielle de cette série est le nombre triangulaire : La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini. Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants (en particulier, diverses méthodes de sommation lui donnent la valeur -1/12), dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.
1 + 1 + 1 + 1 + ⋯En mathématiques, 1 + 1 + 1 + 1 + ⋯, également écrit , ou simplement , est une série divergente, ce qui signifie que la suite de ses sommes partielles ne converge pas vers une limite dans les nombres réels. La suite (1n) est la suite géométrique de raison 1. La série géométrique de raison 1, à la différence de toutes les autres de raison rationnelle différente de −1, ne converge ni dans les réels, ni dans les nombres p-adiques pour certains p. Dans la droite réelle achevée, puisque la suite des sommes partielles est croissante et non majorée.
Multiplication theoremIn mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises. The multiplication theorem takes two common forms.