Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The parallel Schwarz method (PSM) is an overlapping domain decomposition (DD) method to solve partial differential equations (PDEs). Similarly to classical nonoverlapping DD methods, the PSM admits a substructured formulation, that is, it can be formulated ...
Randomized trace estimation is a popular and well-studied technique that approximates the trace of a large-scale matrix B by computing the average of x(T) Bx for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number ...
Eigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) ...
We present asymptotically sharp inequalities, containing a 2nd term, for the Dirichlet and Neumann eigenvalues of the Laplacian on a domain, which are complementary to the familiar Berezin-Li-Yau and Kroger inequalities in the limit as the eigenvalues tend ...
We introduce a new numerical method for the time-dependent Maxwell equations on unstructured meshes in two space dimensions. This relies on the introduction of a new mesh, which is the barycentric-dual cellular complex of the starting simplicial mesh, and ...
This work develops novel rational Krylov methods for updating a large-scale matrix function f(A) when A is subject to low-rank modifications. It extends our previous work in this context on polynomial Krylov methods, for which we present a simplified conve ...
Based on the spectral divide-and-conquer algorithm by Nakatsukasa and Higham [SIAM J. Sci. Comput., 35(3):A1325-A1349, 2013], we propose a new algorithm for computing all the eigenvalues and eigenvectors of a symmetric banded matrix with small bandwidth, w ...
We study many-body localization (MBL) in a pair-hopping model exhibiting strong fragmentation of the Hilbert space. We show that several Krylov subspaces have both ergodic statistics in the thermodynamic limit and a dimension that scales much slower than t ...
In this work we investigate stochastic non-convex optimization problems wherethe objective is an expectation over smooth loss functions, and the goal is to find an approximate stationary point. The most popular approach to handling such problems is varianc ...
We propose a variance reduced algorithm for solving monotone variational inequalities. Without assuming strong monotonicity, cocoercivity, or boundedness of the domain, we prove almost sure convergence of the iterates generated by the algorithm to a soluti ...