Impulse (physics)In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p1, and a subsequent momentum is p2, the object has received an impulse J: Momentum is a vector quantity, so impulse is also a vector quantity. Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: so the impulse J delivered by a steady force F acting for time Δt is: The impulse delivered by a varying force is the integral of the force F with respect to time: The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s).
Ballistic missileA ballistic missile is a type of missile that uses projectile motion to deliver warheads on a target. These weapons are powered only during relatively brief periods—most of the flight is unpowered. Short-range ballistic missiles stay within the Earth's atmosphere, while intercontinental ballistic missiles (ICBMs) are launched on a sub-orbital flight. These weapons are in a distinct category from cruise missiles, which are aerodynamically guided in powered flight.
Variable Specific Impulse Magnetoplasma RocketThe Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat an inert propellant, forming a plasma, then a magnetic field to confine and accelerate the expanding plasma, generating thrust. It is a plasma propulsion engine, one of several types of spacecraft electric propulsion systems. The VASIMR method for heating plasma was originally developed during nuclear fusion research.
Newton (unit)The newton (symbol: N) is the unit of force in the International System of Units (SI). It is defined as 1 kg⋅m/s^2, the force which gives a mass of 1 kilogram an acceleration of 1 metre per second per second. It is named after Isaac Newton in recognition of his work on classical mechanics, specifically Newton's second law of motion. A newton is defined as 1 kg⋅m/s^2 (it is a derived unit which is defined in terms of the SI base units).
Rocket engine nozzleA rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities. Simply: propellants pressurized by either pumps or high pressure ullage gas to anywhere between two and several hundred atmospheres are injected into a combustion chamber to burn, and the combustion chamber leads into a nozzle which converts the energy contained in high pressure, high temperature combustion products into kinetic energy by accelerating the gas to high velocity and near-ambient pressure.
Solar sailSolar sails (also known as lightsails, light sails, and photon sails) are a method of spacecraft propulsion using radiation pressure exerted by sunlight on large surfaces. A number of spaceflight missions to test solar propulsion and navigation have been proposed since the 1980s. The first spacecraft to make use of the technology was IKAROS, launched in 2010. A useful analogy to solar sailing may be a sailing boat; the light exerting a force on the large surface is akin to a sail being blown by the wind.
Heat shieldIn engineering, a heat shield is a component designed to protect an object or a human operator from being burnt or overheated by dissipating, reflecting, and/or absorbing heat. The term is most often used in reference to exhaust heat management and to systems for dissipating frictional heat. Heat shields are used most commonly in automotive and aerospace. Heat shields protect structures from extreme temperatures and thermal gradients by two primary mechanisms.
Liquid rocket propellantThe highest specific impulse chemical rockets use liquid propellants (liquid-propellant rockets). They can consist of a single chemical (a monopropellant) or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source. About 170 different propellants made of liquid fuel have been tested, excluding minor changes to a specific propellant such as propellant additives, corrosion inhibitors, or stabilizers.
Jet engineA jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas (usually air) that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, or pulse jet. In general, jet engines are internal combustion engines.
De Laval nozzleA de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy. De Laval nozzles are widely used in some types of steam turbines and rocket engine nozzles. It also sees use in supersonic jet engines.