**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Impulse (physics)

Summary

In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p1, and a subsequent momentum is p2, the object has received an impulse J:
Momentum is a vector quantity, so impulse is also a vector quantity.
Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object:
so the impulse J delivered by a steady force F acting for time Δt is:
The impulse delivered by a varying force is the integral of the force F with respect to time:
The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s).
Impulse J produced from time t1 to t2 is defined to be
where F is the resultant force applied from t1 to t2.
From Newton's second law, force is related to momentum p by
Therefore,
where Δp is the change in linear momentum from time t1 to t2. This is often called the impulse-momentum theorem (analogous to the work-energy theorem).
As a result, an impulse may also be regarded as the change in momentum of an object to which a resultant force is applied. The impulse may be expressed in a simpler form when the mass is constant:
where
F is the resultant force applied,
t1 and t2 are times when the impulse begins and ends, respectively,
m is the mass of the object,
v2 is the final velocity of the object at the end of the time interval, and
v1 is the initial velocity of the object when the time interval begins.
Impulse has the same units and dimensions (MLT−1) as momentum. In the International System of Units, these are kg⋅m/s = N⋅s. In English engineering units, they are slug⋅ft/s = lbf⋅s.
The term "impulse" is also used to refer to a fast-acting force or impact. This type of impulse is often idealized so that the change in momentum produced by the force happens with no change in time.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Ontological neighbourhood

Related courses (1)

PHYS-101(en): General physics : mechanics (English)

Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c

Related publications (7)

Related people (2)

Related lectures (14)

Related concepts (11)

Inelastic collision

An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energy of the atoms, causing a heating effect, and the bodies are deformed. The molecules of a gas or liquid rarely experience perfectly elastic collisions because kinetic energy is exchanged between the molecules' translational motion and their internal degrees of freedom with each collision.

Tsiolkovsky rocket equation

The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity can thereby move due to the conservation of momentum. It is credited to the Russian scientist Konstantin Tsiolkovsky (Константи́н Эдуа́рдович Циолко́вский) who independently derived it and published it in 1903, although it had been independently derived and published by the British mathematician William Moore in 1810, and later published in a separate book in 1813.

Stress (mechanics)

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).

Continuous Mass Transfer: Momentum and Systems Analysis

Covers continuous mass transfer, momentum diagrams, and systems with changing mass.

Continuous Mass Transfer

Covers momentum conservation, systems with changing mass, and the rocket equation for interstellar travel.

Inelastic Collisions: Conservation Laws

Explains inelastic collisions, focusing on momentum conservation and kinetic energy dissipation.

, ,

Tsunami, impulse-waves and dam-break waves afflict humanity with casualties and damages. An insight into the flow mechanisms of these waves is important to provide safety and reduce reconstruction costs. This experimental study focuses on the effect of bed ...

2019Herbert Shea, Simon Dandavino, Daniel George Courtney

Highly ionic beams of several hundred microampere per squared centimeter have been measured from porous glass ionic liquid electrospray sources fabricated using a conventional mill. The thrust output from three prototype devices, two emitting the ionic liq ...

Jian Wang, Matthias Finger, Lesya Shchutska, Qian Wang, Matthias Wolf, Varun Sharma, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Roberto Castello, Alessandro Degano, Xin Chen, Davide Di Croce, Mingkui Wang, Zhirui Xu, Chao Wang, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Thomas Muller, Ho Ling Li, Giuseppe Codispoti, Hua Zhang, Siyuan Wang, Peter Hansen, Daniel Gonzalez, Tao Huang, David Vannerom, Michele Bianco, Kun Shi, Wei Shi, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Vladimir Petrov, Francesco Fiori, Quentin Python, Meng Xiao, Hao Liu, Yanlin Liu, Viktor Khristenko, Marco Trovato, Gurpreet Singh, Fan Xia, Kai Yi, Bibhuprasad Mahakud, Zhen Liu, Lei Feng, Muhammad Waqas, Shuai Liu, Hui Wang, Seungkyu Ha, Davide Cieri, Maren Tabea Meinhard, Giorgia Rauco, Aram Avetisyan, Ali Harb, Benjamin William Allen, Long Wang, Pratyush Das, Miao Hu

Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications oc ...

2018