Olbers' paradoxOlbers's paradox, also known as the dark night sky paradox, is an argument in astrophysics and physical cosmology that says that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. In the hypothetical case that the universe is static, homogeneous at a large scale, and populated by an infinite number of stars, any line of sight from Earth must end at the surface of a star and hence the night sky should be completely illuminated and very bright.
Redshift surveyIn astronomy, a redshift survey is a survey of a section of the sky to measure the redshift of astronomical objects: usually galaxies, but sometimes other objects such as galaxy clusters or quasars. Using Hubble's law, the redshift can be used to estimate the distance of an object from Earth. By combining redshift with angular position data, a redshift survey maps the 3D distribution of matter within a field of the sky. These observations are used to measure detailed statistical properties of the large-scale structure of the universe.
Peculiar velocityPeculiar motion or peculiar velocity refers to the velocity of an object relative to a rest frame — usually a frame in which the average velocity of some objects is zero. In galactic astronomy, peculiar motion refers to the motion of an object (usually a star) relative to a Galactic rest frame. Local objects are commonly examined as to their vectors of position angle and radial velocity. These can be combined through vector addition to state the object's motion relative to the Sun.
Lyman-alpha forestIn astronomical spectroscopy, the Lyman-alpha forest is a series of absorption lines in the spectra of distant galaxies and quasars arising from the Lyman-alpha electron transition of the neutral hydrogen atom. As the light travels through multiple gas clouds with different redshifts, multiple absorption lines are formed. The Lyman-alpha forest was first discovered in 1970 by astronomer Roger Lynds in an observation of the quasar 4C 05.34. Quasar 4C 05.
Cosmic timeCosmic time, or cosmological time, is the time coordinate commonly used in the Big Bang models of physical cosmology. Such time coordinate may be defined for a homogeneous, expanding universe so that the universe has the same density everywhere at each moment in time (the fact that this is possible means that the universe is, by definition, homogeneous). The clocks measuring cosmic time should move along the Hubble flow.
Homogeneity (physics)In physics, a homogeneous material or system has the same properties at every point; it is uniform without irregularities. A uniform electric field (which has the same strength and the same direction at each point) would be compatible with homogeneity (all points experience the same physics). A material constructed with different constituents can be described as effectively homogeneous in the electromagnetic materials domain, when interacting with a directed radiation field (light, microwave frequencies, etc.
ReionizationIn the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages". Reionization is the second of two major phase transitions of gas in the universe (the first is recombination). While the majority of baryonic matter in the universe is in the form of hydrogen and helium, reionization usually refers strictly to the reionization of hydrogen, the element.
Distance measureDistance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity (such as the luminosity of a distant quasar, the redshift of a distant galaxy, or the angular size of the acoustic peaks in the cosmic microwave background (CMB) power spectrum) to another quantity that is not directly observable, but is more convenient for calculations (such as the comoving coordinates of the quasar, galaxy, etc.
Relativistic beamingRelativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light. In an astronomical context, relativistic beaming commonly occurs in two oppositely-directed relativistic jets of plasma that originate from a central compact object that is accreting matter.
Recessional velocityRecessional velocity is the rate at which an extragalactic astronomical object recedes (becomes more distant) from an observer as a result of the expansion of the universe. It can be measured by observing the wavelength shifts of spectral lines emitted by the object, known as the object's cosmological redshift. Hubble's law is the relationship between a galaxy's distance and its recessional velocity, which is approximately linear for galaxies at distances of up to a few hundred megaparsecs.