In electromagnetics, an evanescent field, or evanescent wave, is an oscillating electric and/or magnetic field that does not propagate as an electromagnetic wave but whose energy is spatially concentrated in the vicinity of the source (oscillating charges and currents). Even when there is a propagating electromagnetic wave produced (e.g., by a transmitting antenna), one can still identify as an evanescent field the component of the electric or magnetic field that cannot be attributed to the propagating wave observed at a distance of many wavelengths (such as the far field of a transmitting antenna).
A hallmark of an evanescent field is that there is no net energy flow in that region. Since the net flow of electromagnetic energy is given by the average Poynting vector, this means that the Poynting vector in these regions, as averaged over a complete oscillation cycle, is zero.
In many cases one cannot simply say that a field is or is not "evanescent" – having the Poynting vector average to zero in some direction (or all directions).
In most cases where they exist, evanescent fields are simply thought of and referred to the same as all other electric or magnetic fields involved, without any special recognition of those fields' evanescence. The term's use is mostly limited to distinguishing a part of a field or solution in those cases where one might only expect the fields of a propagating wave.
For instance, in the illustration at the top of the article, energy is indeed carried in the horizontal direction. However, in the vertical direction, the field strength drops off exponentially with increasing distance above the surface. This leaves most of the field concentrated in a thin boundary layer very close to the interface; for that reason, it is referred to as a surface wave. However, despite energy flowing horizontally, along the vertical there is no net propagation of energy away from (or toward) the surface, so that one could properly describe the field as being "evanescent in the vertical direction".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The lecture, taught by Prof. Jean-Jacques Greffet, covers recent developments in the control of light-matter interaction at the nanoscale using resonant structures such as micro-cavities and antennas.
This course gives an introduction to basic integrated photonics components that are at the core of photonic nanotechnologies today. The course combines theoretical description with practical lab work
This course gives an introduction to transducers by both considering fundamental principles and their application in classical and quantum systems. The course builds up on the fundamental concept of c
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables.
In optics, any optical instrument or system a microscope, telescope, or camera has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.
A superlens, or super lens, is a lens which uses metamaterials to go beyond the diffraction limit. The diffraction limit is a feature of conventional lenses and microscopes that limits the fineness of their resolution depending on the illumination wavelength and the numerical aperture NA of the objective lens. Many lens designs have been proposed that go beyond the diffraction limit in some way, but constraints and obstacles face each of them. In 1873 Ernst Abbe reported that conventional lenses are incapable of capturing some fine details of any given image.
Full wavefront control by photonic components requires that the spatial phase modulation on an incoming optical beam ranges from 0 to 2 pi. Because of their radiative coupling to the environment, all optical components are intrinsically non-Hermitian syste ...
In this paper, a novel feeding method for shorted annular ring (SAR) antennas is presented. SAR antennas can be designed to not excite surface waves and hence have desirable properties for many applications. The traditional method of feeding a SAR is throu ...
IEEE2023
,
Chip-based, single-frequency and low phase-noise integrated photonic laser diodes emitting in the violet (412 nm) and blue (461 nm) regime are demonstrated. The GaN-based edge-emitting laser diodes were coupled to high-quality on-chip micro-resonators for ...