Concept

Archimedean group

In abstract algebra, a branch of mathematics, an Archimedean group is a linearly ordered group for which the Archimedean property holds: every two positive group elements are bounded by integer multiples of each other. The set R of real numbers together with the operation of addition and the usual ordering relation between pairs of numbers is an Archimedean group. By a result of Otto Hölder, every Archimedean group is isomorphic to a subgroup of this group. The name "Archimedean" comes from Otto Stolz, who named the Archimedean property after its appearance in the works of Archimedes. An additive group consists of a set of elements, an associative addition operation that combines pairs of elements and returns a single element, an identity element (or zero element) whose sum with any other element is the other element, and an additive inverse operation such that the sum of any element and its inverse is zero. A group is a linearly ordered group when, in addition, its elements can be linearly ordered in a way that is compatible with the group operation: for all elements x, y, and z, if x ≤ y then x + z ≤ y + z and z + x ≤ z + y. The notation na (where n is a natural number) stands for the group sum of n copies of a. An Archimedean group (G, +, ≤) is a linearly ordered group subject to the following additional condition, the Archimedean property: For every a and b in G which are greater than 0, it is possible to find a natural number n for which the inequality b ≤ na holds. An equivalent definition is that an Archimedean group is a linearly ordered group without any bounded cyclic subgroups: there does not exist a cyclic subgroup S and an element x with x greater than all elements in S. It is straightforward to see that this is equivalent to the other definition: the Archimedean property for a pair of elements a and b is just the statement that the cyclic subgroup generated by a is not bounded by b. The sets of the integers, the rational numbers, and the real numbers, together with the operation of addition and the usual ordering (≤), are Archimedean groups.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.