In mathematics, specifically abstract algebra, a linearly ordered or totally ordered group is a group G equipped with a total order "≤" that is translation-invariant. This may have different meanings. We say that (G, ≤) is a:
left-ordered group if ≤ is left-invariant, that is a ≤ b implies ca ≤ cb for all a, b, c in G,
right-ordered group if ≤ is right-invariant, that is a ≤ b implies ac ≤ bc for all a, b, c in G,
bi-ordered group if ≤ is bi-invariant, that is it is both left- and right-invariant.
A group G is said to be left-orderable (or right-orderable, or bi-orderable) if there exists a left- (or right-, or bi-) invariant order on G. A simple necessary condition for a group to be left-orderable is to have no elements of finite order; however this is not a sufficient condition. It is equivalent for a group to be left- or right-orderable; however there exist left-orderable groups which are not bi-orderable.
In this section is a left-invariant order on a group with identity element . All that is said applies to right-invariant orders with the obvious modifications. Note that being left-invariant is equivalent to the order defined by if and only if being right-invariant. In particular a group being left-orderable is the same as it being right-orderable.
In analogy with ordinary numbers we call an element of an ordered group positive if . The set of positive elements in an ordered group is called the positive cone, it is often denoted with ; the slightly different notation is used for the positive cone together with the identity element.
The positive cone characterises the order ; indeed, by left-invariance we see that if and only if . In fact a left-ordered group can be defined as a group together with a subset satisfying the two conditions that:
for we have also ;
let , then is the disjoint union of and .
The order associated with is defined by ; the first condition amounts to left-invariance and the second to the order being well-defined and total. The positive cone of is .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In abstract algebra, a branch of mathematics, an Archimedean group is a linearly ordered group for which the Archimedean property holds: every two positive group elements are bounded by integer multiples of each other. The set R of real numbers together with the operation of addition and the usual ordering relation between pairs of numbers is an Archimedean group. By a result of Otto Hölder, every Archimedean group is isomorphic to a subgroup of this group.
In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected.
We show that the finitely generated simple left orderable groups G(rho) constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-01900880- ...
The geodesic flows are studied on real forms of complex semi-simple Lie groups with respect to a left-invariant (pseudo-)Riemannian metric of rigid body type. The Williamson types of the isolated relative equilibria on generic adjoint orbits are determined ...
We construct examples of finitely generated infinite simple groups of homeomorphisms of the real line. Equivalently, these are examples of finitely generated simple left (or right) orderable groups. This answers a well known open question of Rhemtulla from ...