In condensed-matter physics, the binary collision approximation (BCA) is a heuristic used to more efficiently simulate the penetration depth and defect production by energetic ions (with kinetic energies in the kilo-electronvolt (keV) range or higher) in solids. In the method, the ion is approximated to travel through a material by experiencing a sequence of independent binary collisions with sample atoms (nuclei). Between the collisions, the ion is assumed to travel in a straight path, experiencing electronic stopping power, but losing no energy in collisions with nuclei.
In the BCA approach, a single collision between the incoming ion and a target atom (nucleus) is treated by solving the classical scattering integral between two colliding particles for the
impact parameter of the incoming ion. Solution of the integral gives the scattering angle of the
ion as well as its energy loss to the sample atoms, and hence what the energy is after the collision compared to before it.
The scattering integral is defined in the centre-of-mass coordinate system (two particles reduced to one single particle with one interatomic potential) and relates the angle of scatter with the interatomic potential.
It is also possible to solve the time integral of the collision to know what time has elapsed during the collision. This is necessary at least when BCA is used in the "full cascade" mode, see below.
The energy loss to electrons, i.e. electronic stopping power,
can be treated either with impact-parameter dependent electronic stopping models
by subtracting a stopping power dependent on the ion velocity only between the collisions, or a combination of the two approaches.
The selection method for the impact parameter divided BCA codes into two main
varieties: "Monte Carlo" BCA and crystal-BCA codes.
In the so-called Monte Carlo BCA
approach the distance to and impact parameter of the next colliding atom is chosen randomly
from a probability distribution which depends only on the atomic density of the material.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
In condensed-matter physics, a collision cascade (also known as a displacement cascade or a displacement spike) is a set of nearby adjacent energetic (much higher than ordinary thermal energies) collisions of atoms induced by an energetic particle in a solid or liquid. If the maximum atom or ion energies in a collision cascade are higher than the threshold displacement energy of the material (tens of eVs or more), the collisions can permanently displace atoms from their lattice sites and produce defects.
In nuclear and materials physics, stopping power is the retarding force acting on charged particles, typically alpha and beta particles, due to interaction with matter, resulting in loss of particle kinetic energy. Its application is important in areas such as radiation protection, ion implantation and nuclear medicine. Both charged and uncharged particles lose energy while passing through matter. Positive ions are considered in most cases below. The stopping power depends on the type and energy of the radiation and on the properties of the material it passes.
Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fabrication and in metal finishing, as well as in materials science research. The ions can alter the elemental composition of the target (if the ions differ in composition from the target) if they stop and remain in the target.
Closed-shell atoms scattered from a metal surface exchange energy and momentum with surface phonons mostly via the interposed surface valence electrons, i.e., via the creation of virtual electron-hole pairs. The latter can then decay into surface phonons v ...
An integrated energetic particle transport model has been constructed in JET plasmas constrained by experimental fast ion loss measurements. The model incorporates a synthetic fast ion loss detector identical to JET's thin-foil Faraday cup fast ion loss de ...
IOP Publishing Ltd2022
Base-induced elimination (E2) and bimolecular nucleophilic substitution (S(N)2) are two of the most versatile reactions that are important in preparative organic chemistry. These stereospecific reactions are often found in direct competition with each othe ...