Cruise control (also known as speed control, cruise command, autocruise, or tempomat) is a system that automatically controls the speed of an automobile. The system is a servomechanism that takes over the throttle of the car to maintain a steady speed as set by the driver. Speed control existed in early automobiles such as the Wilson-Pilcher in the early 1900s. They had a lever on the steering column that could be used to set the speed to be maintained by the engine. In 1908, the Peerless included a governor to maintain the speed of the engine through an extra throttle lever on the steering wheel. Peerless successfully used a flyball governor. They advertised their system as being able to "maintain speed whether uphill or down". A governor was used by James Watt and Matthew Boulton in 1788 to control steam engines, but the use of governors dates at least back to the 17th century. On an engine, the governor uses centrifugal force to adjust throttle position to adapt the speed of the engine to different loads (e.g. when going up a hill). Modern cruise control (also known as a speedostat or tempomat) was invented in 1948 by the blind inventor and mechanical engineer Ralph Teetor. He came up with the idea due to being frustrated by his driver's habit of speeding up and slowing down as he talked. A more significant factor in the developing of cruise control was the speed limit imposed in the US during World War II to reduce gasoline use and tire wear. A mechanism controlled by the driver provided resistance to further pressure on the accelerator pedal when the vehicle reached the desired speed. Teetor's idea of a dashboard speed selector with a mechanism connected to the driveshaft and a device able to push against the gas pedal was patented in 1950. He added a speed lock capability that maintained the car's speed until the driver tapped the brake pedal or turned off the system. A 1955 U.S. patent for a "constant speed regulator" was filed in 1950 by M-Sgt Frank J. Riley.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MICRO-510: Embedded motor control
L'étudiant sera capable de concevoir, de réaliser et de programmer une électronique complète de commande de moteur ou d'actionneur. Il saura appliquer la théorie de la commande de moteur sur des systè
Related lectures (5)
Why Automatic Control
Highlights the superiority of automatic control systems over manual control in various applications.
Learning and Adaptive Control for Robots: Overview and Path Planning
Explores learning and adaptive control for robots, focusing on challenges, path planning with dynamical systems, and real-time planning applications.
Show more
Related publications (12)

Design ontology for cognitive thread supporting traceability management in model-based systems engineering

Jinzhi Lu, Yan Yan

Industrial information integration engineering (IIIE) is an interdisciplinary field to facilitate the industrial information integration process. In the age of complex and large-scale systems, model-based systems engineering (MBSE) is widely adopted in ind ...
Elsevier2024

Review of control strategies for lower-limb exoskeletons to assist gait

Auke Ijspeert, Mohamed Bouri, Ali Reza Manzoori, Romain Pierre François Baud

Background Many lower-limb exoskeletons have been developed to assist gait, exhibiting a large range of control methods. The goal of this paper is to review and classify these control strategies, that determine how these devices interact with the user. Met ...
BMC2021

Input-Constrained Path Following for Autonomous Marine Vehicles with a Global Region of Attraction

Francisco Fernandes Castro Rego

This paper presents a solution to the problem of path following control for autonomous marine vehicles (AMVs) subject to input constraints and constant ocean current disturbances. We propose two nonlinear control strategies: the first is obtained by using ...
ELSEVIER SCIENCE BV2018
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.