CoproductIn , the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic to the , which means the definition is the same as the product but with all arrows reversed.
Category of topological spacesIn mathematics, the category of topological spaces, often denoted Top, is the whose s are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the .
Category of groupsIn mathematics, the Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a . The study of this category is known as group theory. There are two forgetful functors from Grp, M: Grp → Mon from groups to monoids and U: Grp → Set from groups to . M has two adjoints: one right, I: Mon→Grp, and one left, K: Mon→Grp. I: Mon→Grp is the functor sending every monoid to the submonoid of invertible elements and K: Mon→Grp the functor sending every monoid to the Grothendieck group of that monoid.
Function compositionIn mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z. Intuitively, if z is a function of y, and y is a function of x, then z is a function of x.
Surjective functionIn mathematics, a surjective function (also known as surjection, or onto function ˈɒn.tuː) is a function f such that every element y can be mapped from some element x such that f(x) = y. In other words, every element of the function's codomain is the of one element of its domain. It is not required that x be unique; the function f may map one or more elements of X to the same element of Y.
Functor categoryIn , a branch of mathematics, a functor category is a category where the objects are the functors and the morphisms are natural transformations between the functors (here, is another object in the category). Functor categories are of interest for two main reasons: many commonly occurring categories are (disguised) functor categories, so any statement proved for general functor categories is widely applicable; every category embeds in a functor category (via the Yoneda embedding); the functor category often has nicer properties than the original category, allowing certain operations that were not available in the original setting.
MonomorphismIn the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation . In the more general setting of , a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism. That is, an arrow f : X → Y such that for all objects Z and all morphisms g1, g2: Z → X, Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below.
Section (category theory)In , a branch of mathematics, a section is a right inverse of some morphism. , a retraction is a left inverse of some morphism. In other words, if and are morphisms whose composition is the identity morphism on , then is a section of , and is a retraction of . Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative). In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms.
Exponential objectIn mathematics, specifically in , an exponential object or map object is the generalization of a function space in set theory. with all and exponential objects are called . Categories (such as of ) without adjoined products may still have an exponential law. Let be a category, let and be of , and let have all with .
Injective functionIn mathematics, an injective function (also known as injection, or one-to-one function) is a function f that maps distinct elements of its domain to distinct elements; that is, x1 ≠ x2 implies f(x1) f(x2). (Equivalently, f(x1) = f(x2) implies x1 = x2 in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain.