In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.
Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries. All isometries of a bounded (finite) 3D object have one or more common fixed points. We follow the usual convention by choosing the origin as one of them.
The symmetry group of an object is sometimes also called its full symmetry group, as opposed to its proper symmetry group, the intersection of its full symmetry group with E+(3), which consists of all direct isometries, i.e., isometries preserving orientation. For a bounded object, the proper symmetry group is called its rotation group. It is the intersection of its full symmetry group with SO(3), the full rotation group of the 3D space. The rotation group of a bounded object is equal to its full symmetry group if and only if the object is chiral.
The point groups that are generated purely by a finite set of reflection mirror planes passing through the same point are the finite Coxeter groups, represented by Coxeter notation.
The point groups in three dimensions are heavily used in chemistry, especially to describe the symmetries of a molecule and of molecular orbitals forming covalent bonds, and in this context they are also called molecular point groups.
Euclidean group#Overview of isometries in up to three dimensions
The symmetry group operations (symmetry operations) are the isometries of three-dimensional space R3 that leave the origin fixed, forming the group O(3). These operations can be categorized as:
The direct (orientation-preserving) symmetry operations, which form the group SO(3):
The identity operation, denoted by E or the identity matrix I.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
En géométrie, un groupe ponctuel de symétrie est un sous-groupe d'un groupe orthogonal : il est composé d'isométries, c'est-à-dire d'applications linéaires laissant invariants les distances et les angles. Le groupe ponctuel de symétrie d'une molécule est constitué des isométries qui laissent la molécule, en tant que forme géométrique, invariante. thumb|Figure 1 : exemple de rotation En cristallographie, un groupe ponctuel contient les opérations de symétrie qui laissent invariants la morphologie d’un cristal et ses propriétés physiques (la symétrie de la structure atomique d’un cristal est décrite par les groupes d’espace).
En algèbre et plus précisément en théorie des groupes, le groupe dicyclique (pour tout entier n ≥ 2) est défini par la présentation Les groupes () sont les groupes quaternioniques (les groupes dicycliques nilpotents). En particulier, est le groupe des quaternions. est un groupe non abélien d'ordre 4n, extension par le sous-groupe cyclique engendré par (normal et d'ordre 2n) d'un groupe d'ordre 2. Il est donc résoluble. Contrairement au groupe diédral D, cette extension n'est pas un produit semi-direct.
In mathematics, the pin group is a certain subgroup of the Clifford algebra associated to a quadratic space. It maps 2-to-1 to the orthogonal group, just as the spin group maps 2-to-1 to the special orthogonal group. In general the map from the Pin group to the orthogonal group is not surjective or a universal covering space, but if the quadratic form is definite (and dimension is greater than 2), it is both.
Incommensurately modulated crystalline phases are part of a more general family called aperiodic crystals. Their symmetry is treated within the theoretical framework of superspace groups that is a generalization of the 3D space groups that are used for con ...
The set of finite binary matrices of a given size is known to carry a finite type AA bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums t ...
2023
, ,
We introduce a classification of the radial spin textures in momentum space that emerge at the high-symmetry points in crystals characterized by nonpolar chiral point groups (D2, D3, D4, D6, T, O). Based on the symmetry constraints imposed by these point g ...