In geometry, a catenoid is a type of surface, arising by rotating a catenary curve about an axis (a surface of revolution). It is a minimal surface, meaning that it occupies the least area when bounded by a closed space. It was formally described in 1744 by the mathematician Leonhard Euler.
Soap film attached to twin circular rings will take the shape of a catenoid. Because they are members of the same associate family of surfaces, a catenoid can be bent into a portion of a helicoid, and vice versa.
The catenoid was the first non-trivial minimal surface in 3-dimensional Euclidean space to be discovered apart from the plane. The catenoid is obtained by rotating a catenary about its directrix. It was found and proved to be minimal by Leonhard Euler in 1744.
Early work on the subject was published also by Jean Baptiste Meusnier. There are only two minimal surfaces of revolution (surfaces of revolution which are also minimal surfaces): the plane and the catenoid.
The catenoid may be defined by the following parametric equations:
where and and is a non-zero real constant.
In cylindrical coordinates:
where is a real constant.
A physical model of a catenoid can be formed by dipping two circular rings into a soap solution and slowly drawing the circles apart.
The catenoid may be also defined approximately by the Stretched grid method as a facet 3D model.
Because they are members of the same associate family of surfaces, one can bend a catenoid into a portion of a helicoid without stretching. In other words, one can make a (mostly) continuous and isometric deformation of a catenoid to a portion of the helicoid such that every member of the deformation family is minimal (having a mean curvature of zero). A parametrization of such a deformation is given by the system
for , with deformation parameter , where:
corresponds to a right-handed helicoid,
corresponds to a catenoid, and
corresponds to a left-handed helicoid.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below). The term "minimal surface" is used because these surfaces originally arose as surfaces that minimized total surface area subject to some constraint. Physical models of area-minimizing minimal surfaces can be made by dipping a wire frame into a soap solution, forming a soap film, which is a minimal surface whose boundary is the wire frame.
In mathematics, a minimal surface of revolution or minimum surface of revolution is a surface of revolution defined from two points in a half-plane, whose boundary is the axis of revolution of the surface. It is generated by a curve that lies in the half-plane and connects the two points; among all the surfaces that can be generated in this way, it is the one that minimizes the surface area. A basic problem in the calculus of variations is finding the curve between two points that produces this minimal surface of revolution.
In differential geometry and algebraic geometry, the Enneper surface is a self-intersecting surface that can be described parametrically by: It was introduced by Alfred Enneper in 1864 in connection with minimal surface theory. The Weierstrass–Enneper parameterization is very simple, , and the real parametric form can easily be calculated from it. The surface is conjugate to itself.
Delves into the intricate geometry of Gothic architecture, exploring surfaces with variable and constant curvature and the historical evolution of vaults.
We establish basic local existence as well as a stability result concerning small perturbations of the Catenoid minimal surface in R-3 under hyperbolic vanishing mean curvature flow. ...
International Press2012
, , , ,
In this paper, we introduce a new template-based spectral nonrigid registration method in which the target is represented using multilevel partition of unity (MPU) implicit surfaces and the template is embedded in a discrete Laplace-Beltrami based spectral ...
Institute of Electrical and Electronics Engineers0