Résumé
Une martingale est une séquence de variables aléatoires (autrement dit un processus stochastique), telles que l'espérance mathématique à l'instant , conditionnellement à l'information disponible à un moment préalable , notée , vaut (avec ). En particulier, dans un processus discret (t entier), . Une martingale peut modéliser les gains / pertes accumulés par un joueur au cours de répétitions indépendantes d'un jeu de hasard à espérance nulle (même si le joueur s'autorise à modifier sa mise en fonction des gains passés), d'où l'emprunt du terme martingale au monde du jeu. On dira que est un processus adapté à la filtration . On parlera de sous-martingale si et de sur-martingale si . Processus stochastique Un processus stochastique est une famille de variables aléatoires, généralement indexée par ou . Filtration Une filtration est une suite croissante de tribus (ou sigma-algèbres) , c'est-à-dire . Filtration naturelle Soit une suite de variables aléatoires. On dit que définie par est la filtration naturelle de la suite . Processus adapté On dit que le processus est adapté à la filtration si est -mesurable pour tout entier n. Martingale dans Soit une filtration. Soit une suite de variables aléatoires. On dit que est une martingale par rapport à si: est adaptée à la filtration . est intégrable pour tout entier n. Si respecte les deux premières conditions, et alors on l'appelle sous-martingale, et si , alors on l'appelle sur-martingale. On dit que est une -martingale. Processus prévisible Soit une filtration. Soit une suite de variables aléatoires. On dit que est processus prévisible si est -mesurable et est -mesurable pour tout entier n. Soit une ensemble partiellement ordonné un espace de Banach un espace probabilisé avec filtration une processus stochastique sur Alors est appelé un --martingale, si est -adapté, cela signifie , presque sûrement pour tous avec . Si en plus est vrai cela signifie , alors est un -martingal ou court -martingal. Donnons ici une histoire anti-chronologique du nom (et non du concept) de martingale (issue de cette note).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (19)
Temps d'arrêt
vignette|Temps d'impact et temps d'arrêt de trois échantillons de mouvement brownien. En théorie des probabilités, en particulier dans l'étude des processus stochastiques, un temps d'arrêt (également appelé temps d'arrêt optionnel, et correspondant à un temps de Markov ou moment de Markov défini) est une variable aléatoire dont la valeur est interprétée comme le moment auquel le comportement d'un processus stochastique donné présente un certain intérêt.
Processus de Wiener
En mathématiques, le processus de Wiener est un processus stochastique à temps continu nommé ainsi en l'honneur de Norbert Wiener. Il permet de modéliser le mouvement brownien. C'est l'un des processus de Lévy les mieux connus. Il est souvent utilisé en mathématique appliquée, en économie et en physique. Le processus de Wiener est défini comme un mouvement brownien standard monodimensionnel, démarrant à l'origine, et à valeurs réelles.
Marche aléatoire
En mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Afficher plus