Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid.
They include geodetic latitude (north/south) φ, longitude (east/west) λ, and ellipsoidal height h (also known as geodetic height).
The triad is also known as Earth ellipsoidal coordinates (not to be confused with ellipsoidal-harmonic coordinates).
Longitude measures the rotational angle between the zero meridian and the measured point. By convention for the Earth, Moon and Sun, it is expressed in degrees ranging from −180° to +180°. For other bodies a range of 0° to 360° is used.
For this purpose, it is necessary to identify a zero meridian, which for Earth is usually the Prime Meridian. For other bodies a fixed surface feature is usually referenced, which for Mars is the meridian passing through the crater Airy-0. It is possible for many different coordinate systems to be defined upon the same reference ellipsoid.
Geodetic latitude measures how close to the poles or equator a point is along a meridian, and is represented as an angle from −90° to +90°, where 0° is the equator. The geodetic latitude is the angle between the equatorial plane and a line that is normal to the reference ellipsoid. Depending on the flattening, it may be slightly different from the geocentric latitude, which is the angle between the equatorial plane and a line from the center of the ellipsoid. For non-Earth bodies the terms planetographic latitude and planetocentric latitude are used instead.
Ellipsoidal height (or ellipsoidal altitude), also known as geodetic height (or geodetic altitude), is the distance between the point of interest and the ellipsoid surface, evaluated along the ellipsoidal normal vector; it is defined as a signed distance such that points inside the ellipsoid have negative height.
Latitude#Geodetic and geocentric latitudes
Geodetic latitude and geocentric latitude have different definitions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
In geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.
A planetary coordinate system (also referred to as planetographic, planetodetic, or planetocentric) is a generalization of the geographic, geodetic, and the geocentric coordinate systems for planets other than Earth. Similar coordinate systems are defined for other solid celestial bodies, such as in the selenographic coordinates for the Moon. The coordinate systems for almost all of the solid bodies in the Solar System were established by Merton E.
Geographical distance or geodetic distance is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem. Calculating the distance between geographical coordinates is based on some level of abstraction; it does not provide an exact distance, which is unattainable if one attempted to account for every irregularity in the surface of the earth.
Ce cours de base en géomatique présente les concepts et méthodes d’acquisition, de gestion et de représentation des géodonnées. Il inclut les bases de topométrie, géodésie et cartographie, avec un acc
Daily manipulation tasks are characterized by regular features associated with the task structure, which can be described by multiple geometric primitives related to actions and object shapes. Only using Cartesian coordinate systems cannot fully represent ...
Young children and adults process spatial information differently: the former use their bodies as primary reference, while adults seem capable of using abstract frames. The transition is estimated to occur between the 6th and the 12th year of age. The mech ...
NATURE PORTFOLIO2023
Dataset for the paper "Influence of hydrograph shape and sediment augmentation repetition frequency on sediment transport dynamics and bed morphology evolution". It includes coordinates of the defined areas of interest and digital elevation models from the ...