A distributed control system (DCS) is a computerised control system for a process or plant usually with many control loops, in which autonomous controllers are distributed throughout the system, but there is no central operator supervisory control. This is in contrast to systems that use centralized controllers; either discrete controllers located at a central control room or within a central computer. The DCS concept increases reliability and reduces installation costs by localising control functions near the process plant, with remote monitoring and supervision.
Distributed control systems first emerged in large, high value, safety critical process industries, and were attractive because the DCS manufacturer would supply both the local control level and central supervisory equipment as an integrated package, thus reducing design integration risk. Today the functionality of Supervisory control and data acquisition (SCADA) and DCS systems are very similar, but DCS tends to be used on large continuous process plants where high reliability and security is important, and the control room is not geographically remote.
The key attribute of a DCS is its reliability due to the distribution of the control processing around nodes in the system. This mitigates a single processor failure. If a processor fails, it will only affect one section of the plant process, as opposed to a failure of a central computer which would affect the whole process. This distribution of computing power local to the field Input/Output (I/O) connection racks also ensures fast controller processing times by removing possible network and central processing delays.
The accompanying diagram is a general model which shows functional manufacturing levels using computerised control.
Referring to the diagram;
Level 0 contains the field devices such as flow and temperature sensors, and final control elements, such as control valves
Level 1 contains the industrialised Input/Output (I/O) modules, and their associated distributed electronic processors.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An industrial control system (ICS) is an electronic control system and associated instrumentation used for industrial process control. Control systems can range in size from a few modular panel-mounted controllers to large interconnected and interactive distributed control systems (DCSs) with many thousands of field connections. Control systems receive data from remote sensors measuring process variables (PVs), compare the collected data with desired setpoints (SPs), and derive command functions that are used to control a process through the final control elements (FCEs), such as control valves.
An industrial process control or simply process control in continuous production processes is a discipline that uses industrial control systems and control theory to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. It is implemented widely in industries such as automotive, mining, dredging, oil refining, pulp and paper manufacturing, chemical processing and power generating plants.
Automation describes a wide range of technologies that reduce human intervention in processes, namely by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques.
Ce cours inclut la modélisation et l'analyse de systèmes dynamiques, l'introduction des principes de base et l'analyse de systèmes en rétroaction, la synthèse de régulateurs dans le domain fréquentiel
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Provide the students with basic notions and tools for the modeling and analysis of dynamic systems. Show them how to design controllers and analyze the performance of controlled systems.
Modular robotics link the reliability of a centralised system with the adaptivity of a decentralised system. It is difficult for a robot with a fixed shape to be able to perform many different types of tasks. As the task space grows, the number of function ...
N-Nitrosamines are potential human carcinogens frequently detected in natural and engineered aquatic systems. This study sheds light on the role of carbonyl compounds in the formation of N-nitrosamines by nitrosation of five secondary amines via different ...
2024
A gas processing and transport system comprising a natural gas pipeline (1), a plurality of gas conditioning stations (4) connected to the natural gas pipeline between an upstream main natural gas supply and a downstream consumer end, the gas processing st ...