Effective descriptive set theoryEffective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having lightface definitions; that is, definitions that do not require an arbitrary real parameter (Moschovakis 1980). Thus effective descriptive set theory combines descriptive set theory with recursion theory. Effective Polish space An effective Polish space is a complete separable metric space that has a computable presentation. Such spaces are studied in both effective descriptive set theory and in constructive analysis.
Successor ordinalIn set theory, the successor of an ordinal number α is the smallest ordinal number greater than α. An ordinal number that is a successor is called a successor ordinal. The ordinals 1, 2, and 3 are the first three successor ordinals and the ordinals ω+1, ω+2 and ω+3 are the first three infinite successor ordinals. Every ordinal other than 0 is either a successor ordinal or a limit ordinal.
Order typeIn mathematics, especially in set theory, two ordered sets X and Y are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) such that both f and its inverse are monotonic (preserving orders of elements). In the special case when X is totally ordered, monotonicity of f already implies monotonicity of its inverse. One and the same set may be equipped with different orders.
Transitive setIn set theory, a branch of mathematics, a set is called transitive if either of the following equivalent conditions hold: whenever , and , then . whenever , and is not an urelement, then is a subset of . Similarly, a class is transitive if every element of is a subset of . Using the definition of ordinal numbers suggested by John von Neumann, ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals).
Axiom of dependent choiceIn mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice () that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis. A homogeneous relation on is called a total relation if for every there exists some such that is true. The axiom of dependent choice can be stated as follows: For every nonempty set and every total relation on there exists a sequence in such that for all In fact, x0 may be taken to be any desired element of X.
Non-well-founded set theoryNon-well-founded set theories are variants of axiomatic set theory that allow sets to be elements of themselves and otherwise violate the rule of well-foundedness. In non-well-founded set theories, the foundation axiom of ZFC is replaced by axioms implying its negation. The study of non-well-founded sets was initiated by Dmitry Mirimanoff in a series of papers between 1917 and 1920, in which he formulated the distinction between well-founded and non-well-founded sets; he did not regard well-foundedness as an axiom.
Paradoxes of set theoryThis article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory. Set theory as conceived by Georg Cantor assumes the existence of infinite sets. As this assumption cannot be proved from first principles it has been introduced into axiomatic set theory by the axiom of infinity, which asserts the existence of the set N of natural numbers.
Projective hierarchyIn the mathematical field of descriptive set theory, a subset of a Polish space is projective if it is for some positive integer . Here is if is analytic if the complement of , , is if there is a Polish space and a subset such that is the projection of onto ; that is, The choice of the Polish space in the third clause above is not very important; it could be replaced in the definition by a fixed uncountable Polish space, say Baire space or Cantor space or the real line.
John VennJohn Venn, FRS, FSA (4 August 1834 – 4 April 1923) was an English mathematician, logician and philosopher noted for introducing Venn diagrams, which are used in logic, set theory, probability, statistics, and computer science. In 1866, Venn published The Logic of Chance, a groundbreaking book which espoused the frequency theory of probability, arguing that probability should be determined by how often something is forecast to occur as opposed to "educated" assumptions.
New MathNew Mathematics or New Math was a dramatic but temporary change in the way mathematics was taught in American grade schools, and to a lesser extent in European countries and elsewhere, during the 1950s1970s. Curriculum topics and teaching practices were changed in the U.S. shortly after the Sputnik crisis. The goal was to boost students' science education and mathematical skills to compete with Soviet engineers, reputedly highly skilled mathematicians. After the Sputnik launch in 1957, the U.S.