BimoduleIn abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.
Rank of an abelian groupIn mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup.
Cyclic moduleIn mathematics, more specifically in ring theory, a cyclic module or monogenous module is a module over a ring that is generated by one element. The concept is a generalization of the notion of a cyclic group, that is, an Abelian group (i.e. Z-module) that is generated by one element. A left R-module M is called cyclic if M can be generated by a single element i.e. M = (x) = Rx = {rx r ∈ R} for some x in M. Similarly, a right R-module N is cyclic if N = yR for some y ∈ N. 2Z as a Z-module is a cyclic module.
Enriched categoryIn , a branch of mathematics, an enriched category generalizes the idea of a by replacing hom-sets with objects from a general . It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an in some fixed monoidal category of "hom-objects".
Torsion subgroupIn the theory of abelian groups, the torsion subgroup AT of an abelian group A is the subgroup of A consisting of all elements that have finite order (the torsion elements of A). An abelian group A is called a torsion group (or periodic group) if every element of A has finite order and is called torsion-free if every element of A except the identity is of infinite order. The proof that AT is closed under the group operation relies on the commutativity of the operation (see examples section).
Quotient moduleIn algebra, given a module and a submodule, one can construct their quotient module. This construction, described below, is very similar to that of a quotient vector space. It differs from analogous quotient constructions of rings and groups by the fact that in these cases, the subspace that is used for defining the quotient is not of the same nature as the ambient space (that is, a quotient ring is the quotient of a ring by an ideal, not a subring, and a quotient group is the quotient of a group by a normal subgroup, not by a general subgroup).
Change of ringsIn algebra, a change of rings is an operation of changing a coefficient ring to another. Given a ring homomorphism , there are three ways to change the coefficient ring of a module; namely, for a right R-module M and a right S-module N, one can form the induced module, formed by extension of scalars, the coinduced module, formed by co-extension of scalars, and formed by restriction of scalars. They are related as adjoint functors: and This is related to Shapiro's lemma.
Dimension theorem for vector spacesIn mathematics, the dimension theorem for vector spaces states that all bases of a vector space have equally many elements. This number of elements may be finite or infinite (in the latter case, it is a cardinal number), and defines the dimension of the vector space. Formally, the dimension theorem for vector spaces states that: As a basis is a generating set that is linearly independent, the theorem is a consequence of the following theorem, which is also useful: In particular if V is finitely generated, then all its bases are finite and have the same number of elements.
Indecomposable moduleIn abstract algebra, a module is indecomposable if it is non-zero and cannot be written as a direct sum of two non-zero submodules. Indecomposable is a weaker notion than simple module (which is also sometimes called irreducible module): simple means "no proper submodule" , while indecomposable "not expressible as ". A direct sum of indecomposables is called completely decomposable; this is weaker than being semisimple, which is a direct sum of simple modules.
Zero morphismIn , a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object. Suppose C is a , and f : X → Y is a morphism in C. The morphism f is called a constant morphism (or sometimes left zero morphism) if for any W in C and any g, h : W → X, fg = fh. Dually, f is called a coconstant morphism (or sometimes right zero morphism) if for any object Z in C and any g, h : Y → Z, gf = hf. A zero morphism is one that is both a constant morphism and a coconstant morphism.