Concept

Change of rings

In algebra, a change of rings is an operation of changing a coefficient ring to another. Given a ring homomorphism , there are three ways to change the coefficient ring of a module; namely, for a right R-module M and a right S-module N, one can form the induced module, formed by extension of scalars, the coinduced module, formed by co-extension of scalars, and formed by restriction of scalars. They are related as adjoint functors: and This is related to Shapiro's lemma. Throughout this section, let and be two rings (they may or may not be commutative, or contain an identity), and let be a homomorphism. Restriction of scalars changes S-modules into R-modules. In algebraic geometry, the term "restriction of scalars" is often used as a synonym for Weil restriction. Suppose that is a module over . Then it can be regarded as a module over where the action of is given via where denotes the action defined by the -module structure on . Restriction of scalars can be viewed as a functor from -modules to -modules. An -homomorphism automatically becomes an -homomorphism between the restrictions of and . Indeed, if and , then As a functor, restriction of scalars is the right adjoint of the extension of scalars functor. If is the ring of integers, then this is just the forgetful functor from modules to abelian groups. Tensor product of modules and Tensor product of modules#Extension of scalars Extension of scalars changes R-modules into S-modules. Let be a homomorphism between two rings, and let be a module over . Consider the tensor product , where is regarded as a left -module via . Since is also a right module over itself, and the two actions commute, that is for , (in a more formal language, is a -bimodule), inherits a right action of . It is given by for , . This module is said to be obtained from through extension of scalars. Informally, extension of scalars is "the tensor product of a ring and a module"; more formally, it is a special case of a tensor product of a bimodule and a module – the tensor product of an R-module with an -bimodule is an S-module.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
PHYS-702: Advanced Quantum Field Theory
The course builds on the course QFT1 and QFT2 and develops in parallel to the course on Gauge Theories and the SM.
Related lectures (17)
Flat Space-Time: Conditions and Theorems
Covers the necessary conditions and theorems to have flat space-time and discusses the symmetry properties of the Riemann tensor.
Vector Calculus: Scalars and Vectors
Introduces scalars and vectors, explaining their properties and mathematical operations.
Matlab: Interactive Mode and Project Steps
Introduces Matlab basics, error handling, and billiards project concepts.
Show more
Related publications (9)

Matter matters in Einstein-Cartan gravity

Andrey Shkerin, Georgios Karananas, Sebastian Zell

We study scalar, fermionic and gauge fields coupled nonminimally to gravity in the Einstein-Cartan formulation. We construct a wide class of models with nondynamical torsion whose gravitational spectra comprise only themassless graviton. Eliminating nonpro ...
AMER PHYSICAL SOC2021

Bounds on multiscalar CFTs in the epsilon expansion

Matthijs Jan Hogervorst

We study fixed points with N scalar fields in 4 - epsilon dimensions to leading order in epsilon using a bottom-up approach. We do so by analyzing O(N) invariants of the quartic coupling lambda(ijkl) that describes such CFTs. In particular, we show that la ...
SPRINGER2021

Patching And Weak Approximation In Isometry Groups

Eva Bayer Fluckiger

Let R be a semilocal principal ideal domain. Two algebraic objects over R in which scalar extension makes sense (e.g. quadratic spaces) are said to be of the same genus if they become isomorphic after extending scalars to all completions of R and its fract ...
Amer Mathematical Soc2017
Show more
Related concepts (11)
Linear complex structure
In mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space. Every complex vector space can be equipped with a compatible complex structure, however, there is in general no canonical such structure. Complex structures have applications in representation theory as well as in complex geometry where they play an essential role in the definition of almost complex manifolds, by contrast to complex manifolds.
Tensor product of modules
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group.
Bimodule
In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.