Summary
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space (for example could be a topological space, a manifold, or an algebraic variety): to every point of the space we associate (or "attach") a vector space in such a way that these vector spaces fit together to form another space of the same kind as (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over . The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space such that for all in : in this case there is a copy of for each in and these copies fit together to form the vector bundle over . Such vector bundles are said to be trivial. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold we attach the tangent space to the manifold at that point. Tangent bundles are not, in general, trivial bundles. For example, the tangent bundle of the sphere is non-trivial by the hairy ball theorem. In general, a manifold is said to be parallelizable if, and only if, its tangent bundle is trivial. Vector bundles are almost always required to be locally trivial, which means they are examples of fiber bundles. Also, the vector spaces are usually required to be over the real or complex numbers, in which case the vector bundle is said to be a real or complex vector bundle (respectively). Complex vector bundles can be viewed as real vector bundles with additional structure. In the following, we focus on real vector bundles in the . A real vector bundle consists of: topological spaces (base space) and (total space) a continuous surjection (bundle projection) for every in , the structure of a finite-dimensional real vector space on the fiber where the following compatibility condition is satisfied: for every point in , there is an open neighborhood of , a natural number , and a homeomorphism such that for all in , for all vectors in , and the map is a linear isomorphism between the vector spaces and .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

No results

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related MOOCs

Loading