Parallelizable manifoldIn mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields on the manifold, such that at every point of the tangent vectors provide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of .
Pushforward (differential)In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of at to the tangent space of at , . Hence it can be used to push tangent vectors on forward to tangent vectors on .
Submersion (mathematics)In mathematics, a submersion is a differentiable map between differentiable manifolds whose differential is everywhere surjective. This is a basic concept in differential topology. The notion of a submersion is dual to the notion of an immersion. Let M and N be differentiable manifolds and be a differentiable map between them. The map f is a submersion at a point if its differential is a surjective linear map. In this case p is called a regular point of the map f, otherwise, p is a critical point.
Klein bottleIn mathematics, the Klein bottle (ˈklaɪn) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down. More formally, the Klein bottle is a two-dimensional manifold on which one cannot define a normal vector at each point that varies continuously over the whole manifold. Other related non-orientable surfaces include the Möbius strip and the real projective plane.
Pullback bundleIn mathematics, a pullback bundle or induced bundle is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle fE over B′. The fiber of fE over a point b′ in B′ is just the fiber of E over f(b′). Thus f*E is the disjoint union of all these fibers equipped with a suitable topology. Let π : E → B be a fiber bundle with abstract fiber F and let f : B′ → B be a continuous map.
Euler classIn mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this. Throughout this article is an oriented, real vector bundle of rank over a base space . The Euler class is an element of the integral cohomology group constructed as follows.
Frame bundleIn mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle (where k is the rank of E). The frame bundle of a smooth manifold is the one associated to its tangent bundle. For this reason it is sometimes called the tangent frame bundle.
Finsler manifoldIn mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski functional F(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a, b] → M as Finsler manifolds are more general than Riemannian manifolds since the tangent norms need not be induced by inner products. Every Finsler manifold becomes an intrinsic quasimetric space when the distance between two points is defined as the infimum length of the curves that join them.
Charles EhresmannCharles Ehresmann (19 April 1905 – 22 September 1979) was a German-born French mathematician who worked in differential topology and . He was an early member of the Bourbaki group, and is known for his work on the differential geometry of smooth fiber bundles, notably the introduction of the concepts of Ehresmann connection and of jet bundles, and for his seminar on category theory. Ehresmann was born in Strasbourg (at the time part of the German Empire) to an Alsatian-speaking family; his father was a gardener.
Fiber (mathematics)In mathematics, the term fiber (US English) or fibre (British English) can have two meanings, depending on the context: In naive set theory, the fiber of the element in the set under a map is the of the singleton under In algebraic geometry, the notion of a fiber of a morphism of schemes must be defined more carefully because, in general, not every is closed. Let be a function between sets. The fiber of an element (or fiber over ) under the map is the set that is, the set of elements that get mapped to by the function.