Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. For example, Albert Einstein's equation is the quantitative representation in mathematical notation of the mass–energy equivalence. Mathematical notation was first introduced by François Viète at the end of the 16th century and largely expanded during the 17th and 18th centuries by René Descartes, Isaac Newton, Gottfried Wilhelm Leibniz, and overall Leonhard Euler. Glossary of mathematical symbols The use of many symbols is the basis of mathematical notation. They play a similar role as words in natural languages. They may play different roles in mathematical notation similarly as verbs, adjective and nouns play different roles in a sentence. List of letters used in mathematics, science, and engineering Letters are typically used for naming—in mathematical jargon, one says representing—mathematical objects. This is typically the Latin and Greek alphabets that are used, but some letters of Hebrew alphabet are sometimes used. Uppercase and lowercase letters are considered as different symbols. For Latin alphabet, different typefaces provide also different symbols. For example, and could theoretically appear in the same mathematical text with six different meanings. Normally, roman upright typeface is not used for symbols, except for symbols that are formed of several letters, such as the symbol "" of the sine function. In order to have more symbols, and for allowing related mathematical objects to be represented by related symbols, diacritics, subscripts and superscripts are often used. For example, may denote the Fourier transform of the derivative of a function called Symbols are not only used for naming mathematical objects.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
PHYS-313: Quantum physics I
The objective of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
MATH-101(en): Analysis I (English)
We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.
Show more
Related lectures (89)
Recollements: Examples and Constraints
Explores examples and constraints in recollements in mathematics.
Advanced Physics I: Mathematical Concepts
Covers advanced mathematical concepts used in physics calculations, including multiplication and diagonalization.
Hilbert Space: Eigen Functions
Explores Hilbert space and its eigen functions in mathematical operations.
Show more
Related publications (32)

Seeking the new, learning from the unexpected: Computational models of surprise and novelty in the brain

Alireza Modirshanechi

Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
EPFL2024

Topological Effects in Carbon-based Two-dimensional Nanostructures

Yifei Guan

Recent advances on low-dimensional and topological materials has greatly inspired the research in condensed matter physics. This thesis is devoted to the computational and theoretical study of topological effects in two-dimensional materials, especially na ...
EPFL2023

Local invertibility and sensitivity of atomic structure-feature mappings

Michele Ceriotti, Sergey Pozdnyakov

Background: The increasingly common applications of machine-learning schemes to atomic-scale simulations have triggered efforts to better understand the mathematical properties of the mapping between the Cartesian coordinates of the atoms and the variety o ...
2021
Show more
Related concepts (17)
Algebra
Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Expression (mathematics)
In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context. Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax. Many authors distinguish an expression from a formula, the former denoting a mathematical object, and the latter denoting a statement about mathematical objects.
Variable (mathematics)
In mathematics, a variable (from Latin variabilis, "changeable") is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set. Algebraic computations with variables as if they were explicit numbers solve a range of problems in a single computation. For example, the quadratic formula solves any quadratic equation by substituting the numeric values of the coefficients of that equation for the variables that represent them in the quadratic formula.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.