Résumé
On utilise en mathématiques un ensemble de notations pour condenser et formaliser les énoncés et les démonstrations. Ces notations se sont dégagées peu à peu au fil de l'histoire des mathématiques et de l’émergence des concepts associés à ces notations. Elles ne sont pas totalement standardisées. Quand deux traductions d'une notation sont données, l'une est la traduction mot à mot et l'autre est la traduction naturelle. Le présent article traite des notations mathématiques latines. Il existe d'autres notations mathématiques non latines telles que la . Il existe également des notations mathématiques destinées aux non voyants. Comme tout langage formel, une notation mathématique a pour but de retirer l'ambiguïté (notamment linguistique) d'une proposition en la décomposant en un ensemble limité de symboles dont l'agencement ne peut avoir qu'un unique sens. Par exemple, pour dire que vaut un, on utilisera : . Ce langage scientifique permet aussi, dans une moindre mesure, de faciliter la communication entre des mathématiciens ne parlant pas la même langue. S'il ne remplace pas complètement le langage naturel, il permet d'exprimer les concepts mathématiques les plus complexes sous une forme qui est quasi identique suivant de nombreuses langues et cultures, évitant ainsi les quiproquos sur les concepts mathématiques, par des gens ne maîtrisant pas toutes les subtilités grammaticales et syntaxiques de la langue de communication employée. Au sein même de la famille culturelle utilisant la notation mathématique latine, certains concepts du langage formel restent cependant spécifiques à un bassin linguistique donné. Ainsi, dans la littérature mathématique francophone, l'assertion signifie « l'ensemble A est un sous-ensemble de B ou est égal à B » alors que dans la littérature mathématique anglophone, il signifiera plutôt « l'ensemble A est un sous-ensemble strict de B ». La liste de symboles qui suit n'est pas exhaustive. Cependant, l'ensemble des symboles présentés ici sont utilisés de façon universelle dans la littérature mathématique francophone.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.