Related courses (11)
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
PHYS-453: Quantum electrodynamics and quantum optics
This course develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover historic developments (coherent states, squeezed states, quantum theo
PHYS-470: Nonlinear optics for quantum technologies
This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applica
PHYS-619: Many-Body Approaches to Quantum Fluids
Starting from a microscopic description, the course introduces to the physics of quantum fluids focusing on basic concepts like Bose-Einstein condensation, superfluidity, and Fermi liquid theory.
PHYS-425: Quantum physics III
To introduce several advanced topics in quantum physics, including semiclassical approximation, path integral, scattering theory, and relativistic quantum mechanics
PHYS-744: Advanced Topics in Quantum Sciences and Technologies
This course provides an in-depth treatment of the latest experimental and theoretical topics in quantum sciences and technologies, including for example quantum sensing, quantum optics, cold atoms, th
PHYS-207: Quantum mechanics I
The objective of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
PHYS-726: Introduction to Frustrated Magnetism
To provide an introduction to all aspects of the rapidly evolving field of frustrated magnetism:
  1. New paradigms: spin liquids, spin ice, topological order, ...
  2. Basic models and methods
  3. Experi
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
PHYS-641: Quantum Computing
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.