Concept

Subnormal subgroup

In mathematics, in the field of group theory, a subgroup H of a given group G is a subnormal subgroup of G if there is a finite chain of subgroups of the group, each one normal in the next, beginning at H and ending at G. In notation, is -subnormal in if there are subgroups of such that is normal in for each . A subnormal subgroup is a subgroup that is -subnormal for some positive integer . Some facts about subnormal subgroups: A 1-subnormal subgroup is a proper normal subgroup (and vice versa). A finitely generated group is nilpotent if and only if each of its subgroups is subnormal. Every quasinormal subgroup, and, more generally, every conjugate-permutable subgroup, of a finite group is subnormal. Every pronormal subgroup that is also subnormal, is normal. In particular, a Sylow subgroup is subnormal if and only if it is normal. Every 2-subnormal subgroup is a conjugate-permutable subgroup. The property of subnormality is transitive, that is, a subnormal subgroup of a subnormal subgroup is subnormal. The relation of subnormality can be defined as the transitive closure of the relation of normality. If every subnormal subgroup of G is normal in G, then G is called a T-group.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.